
Large Language Models: Research and Practice

刘群 LIU Qun

华为诺亚方舟实验室 Huawei Noah’s Ark Lab

FST Symposium on Science and Technology and Graduation Ceremony

2023-05-25, University of Macao

Large Language Models (LLMs): Background

Pangu Models

LLM Research in Huawei Noah’s Ark Lab

Future Work

Content

Large Language Models (LLMs): Background

Pangu Models

LLM Research in Huawei Noah’s Ark Lab

Future Work

Content

What is a Large Language Model?

From Wikipedia, the free encyclopedia
▶ A large language model (LLM) is a language model consisting of a neural network with many parameters

(typically billions of weights or more), trained on large quantities of unlabeled text using self-supervised
learning or semi-supervised learning. LLMs emerged around 2018 and perform well at a wide variety of
tasks. This has shifted the focus of natural language processing research away from the previous
paradigm of training specialized supervised models for specific tasks.

▶ Though the term large language model has no formal definition, it often refers to deep learning models
having a parameter count on the order of billions or more. LLMs are general purpose models which excel
at a wide range of tasks, as opposed to being trained for one specific task (such as sentiment analysis,
named entity recognition, or mathematical reasoning). The skill with which they accomplish tasks, and the
range of tasks at which they are capable, seems to be a function of the amount of resources (data,
parameter-size, computing power) devoted to them, in a way that is not dependent on additional
breakthroughs in design.

▶ Though trained on simple tasks along the lines of predicting the next word in a sentence, neural language
models with sufficient training and parameter counts are found to capture much of the syntax and
semantics of human language. In addition, large language models demonstrate considerable general
knowledge about the world, and are able to "memorize" a great quantity of facts during training.

1 total: 61

From Pre-trained Language Models (PLMs) to LLMs

Pre-trained Language Models (PLMs) Large Language Models (LLMs)
Typical Models ELMo, BERT, GPT GPT-2, GPT-3
Model Structure BiLSTM, Transformer Transformer
Model Framework Encoder, Encoder-decoder, Decoder Decoder
Attention Mechanism Bidirectional、Unidirectional Unidirectional

Tranining Method Mask & Predict
Autoregressive Generation

Autoregressive Generation

Downs. Task Types NLU NLU & NLG
Model Size 0.1-1B parameters 1-1000B parameters
Downs. Tasks Adapt. Fine-tuning Prompting & Fine-tuning & RLHF

Emergence Abilities Inductive Transfer Learning Zero-shot Learning
Few-shot/In-context Learning
Chain-of-Thought

2 total: 61

List of typical LLMs
Name Release date Developer Number of parameters Corpus size License Notes

BERT 2018-10-11 Google 340 million 3.3 billion words Apache 2.0 early and influential language model

GPT-2 2019-02-14 OpenAI 1.5 billion 40GB (~10 billion tokens) MIT
general-purpose model based on transformer
architecture

GPT-3 2020-06-11 OpenAI 175 billion 499 billion tokens
public web
API

A fine-tuned variant of GPT-3, termed GPT-
3.5, was made available to the public through
a web interface called ChatGPT in 2022.

GPT-Neo 2021-03-01 EleutherAI 2.7 billion 825 GiB MIT

The first of a series of free GPT-3 alternatives
released by EleutherAI. GPT-Neo
outperformed an equivalent-size GPT-3
model on some benchmarks, but was
significantly worse than the largest GPT-3.

PanGu-α 2021-04-26
Pengcheng Lab and
Huawei

200 billion 40 billion tokens Apache 2.0

GPT-J 2021-06-01 EleutherAI 6 billion 825 GiB Apache 2.0 GPT-3-style language model
Megatron-Turing
NLG

2021-10-01 Microsoft and Nvidia 530 billion 338.6 billion tokens
Restricted
web access

Standard architecture but trained on a
supercomputing cluster.

Gopher 2021-12-01 DeepMind 280 billion 300 billion tokens Proprietary

GLaM (Generalist
Language Model)

2021-12-01 Google 1.2 trillion (sparse) 1.6 trillion tokens Proprietary
Sparse mixture-of-experts model, making it
more expensive to train but cheaper to run
inference compared to GPT-3.

Ernie 3.0 Titan 2021-12-01 Baidu 260 billion 4 Tb Proprietary
Chinese-language LLM. Ernie Bot is based on
this model.

Claude 2021-12-01 Anthropic 52 billion 400 billion tokens Closed beta
Fine-tuned for desirable behavior in
conversations.

LaMDA (Language
Models for Dialog
Applications)

2022-01-01 Google 137 billion
1.56T words, 168 billion
tokens

Proprietary
Specialized for response generation in
conversations. Used in Google Bard bot.

GPT-NeoX 2022-02-01 EleutherAI 20 billion 825 GiB Apache 2.0 based on the Megatron architecture

Chinchilla 2022-03-01 DeepMind 70 billion 1.4 trillion tokens Proprietary
reduced-parameter model trained on more
data

PaLM (Pathways
Language Model)

2022-04-01 Google 540 billion 768 billion tokens Proprietary
aimed to reach the practical limits of model
scale

OPT (Open
Pretrained
Transformer)

2022-05-01 Meta 175 billion 180 billion tokens
Non-
commercial
research

GPT-3 architecture with some adaptations
from Megatron

YaLM 100B 2022-06-01 Yandex 100 billion 1.7TB Apache 2.0 English-Russian model

Name Release date Developer Number of parameters Corpus size License Notes
BERT 2018-10-11 Google 340 million 3.3 billion words Apache 2.0 early and influential language model

GPT-2 2019-02-14 OpenAI 1.5 billion 40GB (~10 billion tokens) MIT
general-purpose model based on transformer
architecture

GPT-3 2020-06-11 OpenAI 175 billion 499 billion tokens
public web
API

A fine-tuned variant of GPT-3, termed GPT-
3.5, was made available to the public through
a web interface called ChatGPT in 2022.

GPT-Neo 2021-03-01 EleutherAI 2.7 billion 825 GiB MIT

The first of a series of free GPT-3 alternatives
released by EleutherAI. GPT-Neo
outperformed an equivalent-size GPT-3
model on some benchmarks, but was
significantly worse than the largest GPT-3.

PanGu-α 2021-04-26
Pengcheng Lab and
Huawei

200 billion 40 billion tokens Apache 2.0

GPT-J 2021-06-01 EleutherAI 6 billion 825 GiB Apache 2.0 GPT-3-style language model
Megatron-Turing
NLG

2021-10-01 Microsoft and Nvidia 530 billion 338.6 billion tokens
Restricted
web access

Standard architecture but trained on a
supercomputing cluster.

Gopher 2021-12-01 DeepMind 280 billion 300 billion tokens Proprietary

GLaM (Generalist
Language Model)

2021-12-01 Google 1.2 trillion (sparse) 1.6 trillion tokens Proprietary
Sparse mixture-of-experts model, making it
more expensive to train but cheaper to run
inference compared to GPT-3.

Ernie 3.0 Titan 2021-12-01 Baidu 260 billion 4 Tb Proprietary
Chinese-language LLM. Ernie Bot is based on
this model.

Claude 2021-12-01 Anthropic 52 billion 400 billion tokens Closed beta
Fine-tuned for desirable behavior in
conversations.

LaMDA (Language
Models for Dialog
Applications)

2022-01-01 Google 137 billion
1.56T words, 168 billion
tokens

Proprietary
Specialized for response generation in
conversations. Used in Google Bard bot.

GPT-NeoX 2022-02-01 EleutherAI 20 billion 825 GiB Apache 2.0 based on the Megatron architecture

Chinchilla 2022-03-01 DeepMind 70 billion 1.4 trillion tokens Proprietary
reduced-parameter model trained on more
data

PaLM (Pathways
Language Model)

2022-04-01 Google 540 billion 768 billion tokens Proprietary
aimed to reach the practical limits of model
scale

OPT (Open
Pretrained
Transformer)

2022-05-01 Meta 175 billion 180 billion tokens
Non-
commercial
research

GPT-3 architecture with some adaptations
from Megatron

YaLM 100B 2022-06-01 Yandex 100 billion 1.7TB Apache 2.0 English-Russian model

3 (1) total: 61

List of typical LLMs
Name Release date Developer Number of parameters Corpus size License Notes

BERT 2018-10-11 Google 340 million 3.3 billion words Apache 2.0 early and influential language model

GPT-2 2019-02-14 OpenAI 1.5 billion 40GB (~10 billion tokens) MIT
general-purpose model based on transformer
architecture

GPT-3 2020-06-11 OpenAI 175 billion 499 billion tokens
public web
API

A fine-tuned variant of GPT-3, termed GPT-
3.5, was made available to the public through
a web interface called ChatGPT in 2022.

GPT-Neo 2021-03-01 EleutherAI 2.7 billion 825 GiB MIT

The first of a series of free GPT-3 alternatives
released by EleutherAI. GPT-Neo
outperformed an equivalent-size GPT-3
model on some benchmarks, but was
significantly worse than the largest GPT-3.

PanGu-α 2021-04-26
Pengcheng Lab and
Huawei

200 billion 40 billion tokens Apache 2.0

GPT-J 2021-06-01 EleutherAI 6 billion 825 GiB Apache 2.0 GPT-3-style language model
Megatron-Turing
NLG

2021-10-01 Microsoft and Nvidia 530 billion 338.6 billion tokens
Restricted
web access

Standard architecture but trained on a
supercomputing cluster.

Gopher 2021-12-01 DeepMind 280 billion 300 billion tokens Proprietary

GLaM (Generalist
Language Model)

2021-12-01 Google 1.2 trillion (sparse) 1.6 trillion tokens Proprietary
Sparse mixture-of-experts model, making it
more expensive to train but cheaper to run
inference compared to GPT-3.

Ernie 3.0 Titan 2021-12-01 Baidu 260 billion 4 Tb Proprietary
Chinese-language LLM. Ernie Bot is based on
this model.

Claude 2021-12-01 Anthropic 52 billion 400 billion tokens Closed beta
Fine-tuned for desirable behavior in
conversations.

LaMDA (Language
Models for Dialog
Applications)

2022-01-01 Google 137 billion
1.56T words, 168 billion
tokens

Proprietary
Specialized for response generation in
conversations. Used in Google Bard bot.

GPT-NeoX 2022-02-01 EleutherAI 20 billion 825 GiB Apache 2.0 based on the Megatron architecture

Chinchilla 2022-03-01 DeepMind 70 billion 1.4 trillion tokens Proprietary
reduced-parameter model trained on more
data

PaLM (Pathways
Language Model)

2022-04-01 Google 540 billion 768 billion tokens Proprietary
aimed to reach the practical limits of model
scale

OPT (Open
Pretrained
Transformer)

2022-05-01 Meta 175 billion 180 billion tokens
Non-
commercial
research

GPT-3 architecture with some adaptations
from Megatron

YaLM 100B 2022-06-01 Yandex 100 billion 1.7TB Apache 2.0 English-Russian model

Name Release date Developer Number of parameters Corpus size License Notes
BERT 2018-10-11 Google 340 million 3.3 billion words Apache 2.0 early and influential language model

GPT-2 2019-02-14 OpenAI 1.5 billion 40GB (~10 billion tokens) MIT
general-purpose model based on transformer
architecture

GPT-3 2020-06-11 OpenAI 175 billion 499 billion tokens
public web
API

A fine-tuned variant of GPT-3, termed GPT-
3.5, was made available to the public through
a web interface called ChatGPT in 2022.

GPT-Neo 2021-03-01 EleutherAI 2.7 billion 825 GiB MIT

The first of a series of free GPT-3 alternatives
released by EleutherAI. GPT-Neo
outperformed an equivalent-size GPT-3
model on some benchmarks, but was
significantly worse than the largest GPT-3.

PanGu-α 2021-04-26
Pengcheng Lab and
Huawei

200 billion 40 billion tokens Apache 2.0

GPT-J 2021-06-01 EleutherAI 6 billion 825 GiB Apache 2.0 GPT-3-style language model
Megatron-Turing
NLG

2021-10-01 Microsoft and Nvidia 530 billion 338.6 billion tokens
Restricted
web access

Standard architecture but trained on a
supercomputing cluster.

Gopher 2021-12-01 DeepMind 280 billion 300 billion tokens Proprietary

GLaM (Generalist
Language Model)

2021-12-01 Google 1.2 trillion (sparse) 1.6 trillion tokens Proprietary
Sparse mixture-of-experts model, making it
more expensive to train but cheaper to run
inference compared to GPT-3.

Ernie 3.0 Titan 2021-12-01 Baidu 260 billion 4 Tb Proprietary
Chinese-language LLM. Ernie Bot is based on
this model.

Claude 2021-12-01 Anthropic 52 billion 400 billion tokens Closed beta
Fine-tuned for desirable behavior in
conversations.

LaMDA (Language
Models for Dialog
Applications)

2022-01-01 Google 137 billion
1.56T words, 168 billion
tokens

Proprietary
Specialized for response generation in
conversations. Used in Google Bard bot.

GPT-NeoX 2022-02-01 EleutherAI 20 billion 825 GiB Apache 2.0 based on the Megatron architecture

Chinchilla 2022-03-01 DeepMind 70 billion 1.4 trillion tokens Proprietary
reduced-parameter model trained on more
data

PaLM (Pathways
Language Model)

2022-04-01 Google 540 billion 768 billion tokens Proprietary
aimed to reach the practical limits of model
scale

OPT (Open
Pretrained
Transformer)

2022-05-01 Meta 175 billion 180 billion tokens
Non-
commercial
research

GPT-3 architecture with some adaptations
from Megatron

YaLM 100B 2022-06-01 Yandex 100 billion 1.7TB Apache 2.0 English-Russian model

Minerva 2022-06-01 Google 540 billion

38.5B tokens from
webpages filtered for
mathematical content and
from papers submitted to
the arXiv preprint server

Proprietary

LLM trained for solving "mathematical and
scientific questions using step-by-step
reasoning". Minerva is based on PaLM model,
further trained on mathematical and scientific
data.

BLOOM 2022-07-01
Large collaboration
led by Hugging Face

175 billion 350 billion tokens (1.6TB)
Responsible
AI

Essentially GPT-3 but trained on a multi-
lingual corpus (30% English excluding
programming languages)

AlexaTM (Teacher
Models)

2022-11-01 Amazon 20 billion 1.3 trillion
public web
API

bidirectional sequence-to-sequence
architecture

LLaMA (Large
Language Model
Meta AI)

2023-02-01 Meta 65 billion 1.4 trillion
Non-
commercial
research

Trained on a large 20-language corpus to aim
for better performance with fewer parameters.
 Researchers from Stanford University trained
a fine-tuned model based on leaked LLaMA
weights, called Alpaca.

GPT-4 2023-03-01 OpenAI Unknown Unknown
public web
API

Available for ChatGPT Plus users and used in
several products.

PanGu-Σ 2023-03-20 Huawei 1 trillion (sparse) 300 billion tokens Proprietary
3 (2) total: 61

The road map of GPT-3 families

Yao Fu, How does GPT Obtain its Ability? Tracing Emergent Abilities of Language Models to their Sources (Blog)

4 total: 61

Pros and Cons of LLMs

▶ Pros:
▶ Language Ability
▶ Simple Reasoning Ability
▶ Human-like Behaviour

▶ Cons:
▶ Halluciation
▶ Math, Logic and Complex Reasoning Ablilties
▶ Security: Bias, Offence, Discrimination...

5 total: 61

Large Language Models (LLMs): Background

Pangu Models

LLM Research in Huawei Noah’s Ark Lab

Future Work

Content

Pangu Models

PanGu-ケ: A Chinese 200-billion-parameters dense language lodel

Pangu-ィ series: a multi-domian one-trillion-parameters sparse language model

Content

Pangu-ケ: A Large-scale Autoregressive Pretrained Chinese Language Model

PANGU-α: LARGE-SCALE AUTOREGRESSIVE PRETRAINED
CHINESE LANGUAGE MODELS WITH AUTO-PARALLEL

COMPUTATION

TECHNICAL REPORT

Wei Zeng∗ Xiaozhe Ren∗ Teng Su∗ Hui Wang∗

Yi Liao Zhiwei Wang Xin Jiang Zhenzhang Yang Kaisheng Wang Xiaoda Zhang

Chen Li Ziyan Gong Yifan Yao Xinjing Huang Jun Wang Jianfeng Yu Qi Guo

Yue Yu Yan Zhang Jin Wang Hengtao Tao Dasen Yan Zexuan Yi Fang Peng

Fangqing Jiang Han Zhang Lingfeng Deng Yehong Zhang Zhe Lin

Chao Zhang Shaojie Zhang Mingyue Guo Shanzhi Gu Gaojun Fan Yaowei Wang

Xuefeng Jin Qun Liu Yonghong Tian

PANGU-α TEAM

ABSTRACT

Large-scale Pretrained Language Models (PLMs) have become the new paradigm for Natural Lan-
guage Processing (NLP). PLMs with hundreds of billions parameters such as GPT-3 [1] have
demonstrated strong performances on natural language understanding and generation with few-shot
in-context learning. In this work, we present our practice on training large-scale autoregressive
language models named PanGu-α, with up to 200 billion parameters. PanGu-α is developed under
the MindSpore2 and trained on a cluster of 2048 Ascend 910 AI processors3. The training parallelism
strategy is implemented based on MindSpore Auto-parallel, which composes five parallelism dimen-
sions to scale the training task to 2048 processors efficiently, including data parallelism, op-level
model parallelism, pipeline model parallelism, optimizer model parallelism and rematerialization. To
enhance the generalization ability of PanGu-α, we collect 1.1TB high-quality Chinese data from a
wide range of domains to pretrain the model. We empirically test the generation ability of PanGu-α
in various scenarios including text summarization, question answering, dialogue generation, etc.
Moreover, we investigate the effect of model scales on the few-shot performances across a broad range
of Chinese NLP tasks. The experimental results demonstrate the superior capabilities of PanGu-α in
performing various tasks under few-shot or zero-shot settings.

Keywords Pre-trained Language Models · Large-scale Deep Models · Distributed Training · Chinese Language
Understanding and Generation

∗Equal Contribution
2https://www.mindspore.cn/en
3https://e.huawei.com/en/products/servers/ascend

ar
X

iv
:2

10
4.

12
36

9v
1

 [
cs

.C
L

]
 2

6
A

pr
 2

02
1

Technical report: http://arxiv.org/abs/2104.12369

6 (1) total: 61

Pangu-ケ: A Large-scale Autoregressive Pretrained Chinese Language Model

▶ The first Chinese autoregressive dense LM with 200B parameters
▶ State-of-the-art performance in few-shot Chinese NLP tasks
▶ Code and model open-sourced
▶ Fully based on Huawei technology stack (MindSpore+CANN+Ascend910)
▶ Collaboration with Pengcheng Lab, Peking University and Huawei CSL

Technical report: http://arxiv.org/abs/2104.12369

6 (2) total: 61

Pangu-ケ: Model architecture
TECHNICAL REPORT - APRIL 27, 2021

the cat onsat

1 2 3 4

+ + + +

BOS

0

+

Token

Position

the

5

+

mat

Transformer
Layers

Query layer

6

Figure 1: The architecture of PanGu-α. The model is based on a uni-directional Transformer decoder. A query layer is
stacked on top of Transformer layers with the position embedding as the query in the attention mechanism to generate
the token at the next position.

With multiple attention heads, the output becomes:

MHA(Hl−1) =
Nh∑

h=1

Attentionh(Hl−1)W
m
h ,

HMHA
l = Hl−1 + MHA(LayerNorm(Hl−1)).

(3)

Feed-forward Network: The FFN layer is composed of two linear layers, parameterized by W 1 ∈ Rd×dff , b1 ∈ Rdff ,
W 2 ∈ Rdff×d, b2 ∈ Rd, where dff is the dimension of the inner-layer. Fed with the output of MHA layer as input, the
output of FFN layer is then computed as:

FFN(HMHA
l) = GeLU(HMHA

l W 1 + b1)W 2 + b2,

Hl = HMHA
l + FFN(LayerNorm(HMHA

l)).
(4)

For both MHA and FFN, we take the pre-layer normalization scheme, which can make the training of Transformer
model easier and faster [14].

2.2.2 Query Layer

We design the query layer on top of the stacked Transformer layers, which aims to explicitly induce the expected output.
In the pretraining stage of the autoregressive model, it comes to the prediction of the next token. The structure of the
query layer resembles the transformer layer, except that an additional embedding pn ∈ Rd indicating the next position
is used as the query vector in the attention mechanism. Specifically, assuming HL is the output of the uppermost
transformer layer, the attention vector in the query layer is computed as:

ah = pnW
q
hW

k>
h H>L . (5)

The subsequent computation of MHA and FFN remains the same as the original Transformer. We denote the final
output as on. The negative log-likelihood of next token becomes:

CrossEntropy(xn,Softmax(onW o + bo)), (6)

where xn denotes the true token and W o, bo is the additional task-dependent parameters.

2.2.3 Model Configurations

To evaluate the scaling ability of the PanGu-α model, we train three models with increasing magnitude of parameter
sizes, that is, PanGu-α 2.6B, PanGu-α 13B, and PanGu-α 200B. Table 1 shows the detailed configurations of the three
models, including the number of total parameters, the hidden dimension for the tokens, the inner dimension of the
feed-forward layer, and the number of attention heads.

4

7 total: 61

Pangu-ケ: Model sizes and data collection and filteringTECHNICAL REPORT - APRIL 27, 2021

Table 1: Model sizes and hyperparameters of PanGu-α models.
Model #Parameters #Layers (L) Hidden size (d) FFN size (dff) #Heads (Nh)

PanGu-α 2.6B 2.6B 32 2560 10240 40
PanGu-α 13B 13.1B 40 5120 20480 40

PanGu-α 200B 207.0B 64 16384 65536 128

Big data management platform

Data cleaning Data filtering Deduplication

Model-based

evaluation(PanGu-α-350M)

Manual

evaluation

Add/Modify rules
Improve the

model

Public datasets

Common Crawl

e-Books
Dataset

Add/Modify rules
Improve the

model

Encyclopedia

News

Figure 2: The data sources and the process of constructing pretraining data for PanGu-α.

3 Dataset

A large-scale Chinese text corpus of high quality is crucial for the pretraining of our PanGu-α models, especially the
one with 200B parameters. Existing large-scale text corpora for pretraining super large language models are mainly
English. For example, the GPT-3 [1] is trained using a dataset which contains 570GB filtered texts from Common
Crawl with 92.6% of the words are English. The Colossal Clean Crawled Corpus (C4) for training T5 consists of about
750GB clean English texts scraped from the web [6]. To the best of our knowledge, there are three Chinese text corpora
that are above 100GB: (a) CLUECorpus2020 (100GB), which is retrieved from the Common Crawl dataset [15]; (b) the
Chinese multi-modal pretraining data, released by [16] which contains 300GB texts; and (c) WuDaoCorpus6, which
opens about 300GB text data to only specific partners so far. However, all the above datasets are still not enough to
train the super large-scale models up to 200B parameters compared to the data size used in existing English pretrained
models.

Even though the raw web datasets such as SogouT7 and Common Crawl8 contain massive amount of Chinese texts, the
construction of our desired dataset is still challenging due to the highly varying quality of the raw web data, the huge
amount of storage and computation to preprocess the data, and the lack of well-defined metrics to evaluate the quality
of the data.

To tackle the aforementioned issues, we construct a 1.1TB high-quality Chinese text corpus by cleaning and filtering
enormous raw data from multiple sources. A big data management platform is built to accelerate the massive data
analysis and processing. Both manual and model-based evaluation measures are used to guide the data preprocessing
and training data selection, as detailed in the following sections.

3.1 Dataset Construction

To construct a large-scale high-quality Chinese corpus, we collect nearly 80TB raw data from the public datasets
(e.g., BaiDuQA, CAIL2018, Sogou-CA, etc.), web pages data from Common Crawl, encyclopedia, news and e-books.
As shown in Figure 2, our data construction process includes three steps: rule-based data cleaning, model-based
data filtering and text deduplication. To improve the quality of the training dataset, the first two steps (i.e., cleaning
and filtering) are iteratively enhanced via manual and model-based data quality evaluations. The data construction
process is done on a big data management platform built based on the open source Spark/Hadoop framework using

6https://data.baai.ac.cn/data-set-details/0c8dc71dd06ae75a10ca422fb49b0751
7https://www.sogou.com/labs/resource/t.php
8https://commoncrawl.org/the-data/

5

8 total: 61

Pangu-ケ: Data composition and sampling strategyTECHNICAL REPORT - APRIL 27, 2021

Table 3: Data composition of the 1.1TB Chinese text corpus.

Size (GB) Data source Processing steps

Public datasets 27.9 15 public datasets including DuReader,
BaiDuQA, CAIL2018, Sogou-CA, etc.

Format conversion11 and text
deduplication

Encyclopedia 22 Baidu Baike, Sogou Baike, etc. Text deduplication

e-Books 299 e-Books on various topics (e,g., novels, his-
tory, poetry, ancient prose, etc.).

Sensitive word and model-
based spam filtering

Common Crawl 714.9 Web data from January 2018 to December
2020 from Common Crawl. All steps

News 35.5 News data from 1992 to 2011. Text deduplication

Table 4: Sampling strategy of the corpora in training PanGu-α models.

PanGu-α 200B PanGu-α 2.6B&13B
Quantity
(tokens)

Weight in
training mix

Epochs elapsed
when training

Quantity
(tokens)

Weight in
training mix

Public datasets 25.8B 10.23% 3.65 7B 27.99%
e-Books 30.9B 12.23% 0.41 5.6B 18%

Common Crawl 176.2B 62.81% 0.85 2.5B 10%
News 19.8B 7.83% 2.2 5.6B 22%

Encyclopedia data 5.8B 6.9% 3 5.8B 23%

models according to the evaluation results. Both manual and model-based evaluations are considered. The manual
evaluation is conducted over randomly sampled texts from the perspectives of sentence smoothness and the amount of
low-quality contents (e.g., advertisements, repeated short sentences, spams, etc.). However, the manual evaluation can
only cover a very small proportion of the whole dataset. To improve the accuracy of the data evaluation, we train the
PanGu-α 350M model using 30GB data sampled from the preprocessed dataset and evaluate the data quality using the
PPL on a high-quality development dataset. The preprocessed dataset that achieves lower PPL is considered to have
higher quality and its corresponding cleaning rules and filtering models are considered to be better.

3.2 Training Data Selection

Using the construction process in Figure 2, a Chinese text corpus with 1.1TB data is built from the five types of data
sources. The composition of our corpus and the processing steps adopted to each data source is shown in Table 3.2.
Based on the new corpus, we construct two training datasets with 100GB and 1TB text data for our medium (2.6B and
13B) and large (200B) models, respectively. As shown in Table 3.2, each data source is sampled during training with
different proportions according to the quality of the processed dataset evaluated using the method in Section 3.1.3. The
distribution of the number of token in each training dataset is shown in Figure 3. The averaged document lengths of
the 100GB and 1TB dataset are 239 and 405 tokens, respectively. The 1TB dataset has a larger averaged document
length due to the large proportion of Common Crawl dataset. Note that the length of the text will affect the generation
performance of the model. When the averaged number of token for the training samples is small, the model will be
biased to generate short texts and be good at processing downstream tasks requiring short texts, and vice versa.

4 System

Training PanGu-α 200B and using it for inference are difficult. The memory requirement for just storing PanGu-α 200B
is around 750 GB. Training such a huge model consumes several times more memory than just storing the parameters,
since the gradients and optimizer states are also essential for updating the parameters. As a contrast, the memory
of modern AI processors (e.g., GPU, Ascend 910 AI processor [12]) is still around 30-40 GB. Thus, it is inevitable
to partition the model to a collection of devices (processors). The problem is challenging in two perspectives. First,
multiple basic parallel functionalities should be combined to acquire the end-to-end high performance. Finding the best

11We remove the labels in all the labeled datasets such that the model is trained for few-shot learning instead of multi-task learning.

7

9 total: 61

PanGu-ケ: Training techniques - Model Parallelization

Technical Report: https://arxiv.org/pdf/2104.12369.pdf

10 total: 61

https://arxiv.org/pdf/2104.12369.pdf

Pangu-ケ: Training techniques - Parallelization strategyTECHNICAL REPORT - APRIL 27, 2021

MatMul

X1

BMatMul

MatMul

X2

Q11

Attention

Q12

Q21 Q22

Qij = XiPj

Softmax Dropout

MatMul

BMatMul MatMul

P
1

P
2

V11 V12

V21 V22

X1

X2

MatMul MatMul

FeedForward

Layer 1 (Pipeline stage 0)

K11 K12

K21 K22
AllReduce AllReduce

MatMul

X1

BMatMul

MatMul

X2

Q11

Attention

Q12

Q21 Q22

Qij = XiPj

Softmax Dropout

MatMul

BMatMul MatMul

P
1

P
2

V11 V12

V21 V22

X1

X2

MatMul MatMul

FeedForward

Layer 2 (Pipeline stage 1)

K11 K12

K21 K22
AllReduce AllReduce

Figure 6: A simplified PanGu-α’s parallelization strategy. The ellipsoids stand for the operators, blue rectangles
represent tensors, and green rectangles represent trainable parameters. Parameters are partitioned along the row and
column dimension respectively, and the input tensor is partitioned along the row dimension. And, two layers are
assigned to different pipeline stages.

the development of new models. Auto-parallel enables parallel training by just adding annotations on the standalone
model script. Here, we briefly go through two model parallelism regimes.

Figure 7 shows how to specify the combined parallelization strategy to PanGu-α. Figure 7(a) and Figure 7(b) shows
the pseudocode of configuring Attention and FeedForward to conduct op-level parallelism, respectively. qkv_mm’s
sharding strategy is ((2, 1), (1, 2)), indicating that x is partitioned along the row (batch or data) dimension into
2 slices, while q_w, k_w and v_w are partitioned along the column dimension. Since the device number is 4 here, each
device holds a distinct pair of a x’s slice and a q_w’s (k_w’s and v_w’s) slice. matmul’s sharding strategy is ((2, 2),
(2, 1)), where the contracting dimension is partitioned, thus an AllReduce is needed here to perform the operation.
Likewise, another AllReduce is needed in Figure 7(b)’s matmul2. Auto-parallel can find such needed operators.
Furthermore, the tensor redistribution is designed to automatically find the transformation (a list of operators) between
any two inconsistent distributed tensor layouts with minimum communication cost, and then the operators are inserted
into the data flow graph. The sharding strategy of batch_mm in Figure 7(a) corresponds to splitting the batch and head
dimension.

Figure 7(d) shows the pseudocode of conducting pipeline parallelism in MindSpore. The number of stages is configured
as 2, and the number of devices is 8. Thus, 4 devices together perform each stage. The layer1 is configured to be
the stage 0, thus replicated on 4 devices. Likewise, layer2 is replicated on the other 4 devices. If combined with
Figure 7(a) and Figure 7(b), the desired parallelization strategy is obtained to PanGu-α.13 Send and Receive are
inferred to communicate the activation output from stage 0 to stage 1, and then are automatically inserted into the data
flow graphs on two stages, respectively.

In the future, we will: a) develop a cost model and a parallelization strategy searching algorithm for all parallelism
dimensions in order to completely liberate developers from the underlying parallel-related works; b) support the
heterogeneous-parallelism to offload a part of tensors and the corresponding computations to the host CPU to accelerate
the training; c) use Sparse Attention to speedup the computation.

All training and inference jobs are run on the ModelArts14 platform, which manages the end-to-end workflows and
provides the functionality of cluster scheduling for a job to acquire a hierarchical cluster.

13The stategy of optimizer parallelism is hidden in how batch dimension is split in the configuration. We omit the configuration
for rematerialization here.

14https://www.huaweicloud.com/product/modelarts.html

10

11 total: 61

PanGu-ケ: Training techniques - 3-D parallel training
▶ 3-D mixture paralle: data parallel + pipeline

parallel + model parallel
▶ Data parallel: partition in batche dimension
▶ Pipeline parallel: partition in layer dimension
▶ Model parallel: partition in operator dimension

▶ By mapping 3-D coordinates to physical devices,
we can train the huge models like GPT-3
efficiently.

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

12 total: 61

PanGu-ケ: Training techniques - Optimizer state parallel

▶ Feature：
▶ inner-layer partition: partition in dimensions of

parameters, optimizer states and gradients
▶ communication grouping parallel: allgather and

reduce-catter, forward and backword computing
▶ mixture precision: use fp16 for forward-backword

propogation and communication, use fp32 for
optimizer parameters

13 total: 61

PanGu-ケ: Training techniques - Re-computing

▶ Abandon activitions in forward
computing, and re-computing them in
backward propogation. Trade time for
spaces.

14 total: 61

PanGu-ケ: Training techniques - Heterogeneous computing

▶ In the past few years, the model sizes
increased by 1000 times, while the memory
of parallel computing devices only increased
by 5 times (GPU memory: 16G to 80G)

▶ Move parts of computing of training to Host
CPUs and Host memories. A typical solution
is optimizer heterogeneous computing.

▶ The number of Adam Optimizer states is
twice of the number of model weights: A
175B GPT-3 model has 350B optimizer
states

▶ Move the adam optimizer computing to Host
CPU, and optimizer states to Host memory.

▶ This can greatly reduce the memory cost in
GPU/NPUs.

Optimizer CPU execution

15 total: 61

Pangu-ケ: Training curves
TECHNICAL REPORT - APRIL 27, 2021

0 1 2 3 4 5 6 7
Tokens 1e10

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Lo
ss

2.6B
13B
200B

Figure 8: Training curves of three PanGu-α models with different model sizes. The x-axis denotes the number of
training tokens, which is measured as training_steps ∗ batch_size ∗ sequence_length. The y-axis denotes the
training loss.

Table 6: The validation perplexity of the PanGu-α models.

Models Validation PPL
PanGu-α 2.6B 19.33
PanGu-α 13B 17.69
PanGu-α 200B 15.59

5.2 Task Description

In this section, we evaluate our models on a broad spectrum of natural language processing tasks. Similar to the GPT-3
[1], the experiments are conducted under three learning settings, i.e., zero-shot, one-shot, and few-shot, without any
finetuning. For each task, we evaluate the models with the test sets when publicly available. Otherwise, we use the
development sets instead. For some tasks with a very large test set or development set, we randomly sample a subset
from the dataset in the experiments to reduce the computational cost. The evaluation datasets are classified into 7
categories by the task similarities, and we describe each category as follows.

Cloze and completion tasks, including WPLC, CHID [30], PD&CFT [31], CMRC2017 [32], and CMRC2019
[33]. Chinese WPLC (Word Prediciton with Long Context) is a dataset created to test the ability to model long-range
dependencies, similar to the LAMBADA dataset [34] for English. The CHID (Chinese IDiom dataset) requires the
model to identify the ground-truth idiom from 10 candidate idioms. The PD&CFT task requires the model to predict
the mask words in sentences derived from People’s Daily (PD) news dataset and Children’s Fairy Tale (CFT) dataset.
The CMRC2017 (Chinese Machine Reading Comprehension) task contains two different sub-task: cloze-style task and
user query reading comprehension task, among which we only evaluate our models on the cloze-style task. While the
aforementioned tasks are word-level tasks, the CMRC2019 is a sentence cloze-style dataset that involves filling the
right sentence from several candidate sentences into the passage. For the CMRC2019 and the CHID, a list of candidate
choices are provided, making them classification tasks, while for WPLC, CMRC2017 and PD&CFT, the models need to
generate the answer as no candidate choices are given. Accuracy metric is employed for evaluating the cloze-style tasks.

12

16 total: 61

Pangu-ケ: Experimental results

TECHNICAL REPORT - APRIL 27, 2021

Figure 10: Prompt for perplexity-based tasks of OCNLI

Table 9: Performance comparison of CPM 2.6B v.s. PanGu-α 2.6B on few-shot NLP tasks.

Zero-Shot One-Shot Few-Shot
Dataset Method Metrics Task Types CPM 2.6B PanGu-α 2.6B CPM 2.6B PanGu-α 2.6B #Shot(K) CPM 2.6B PanGu-α 2.6B

CMRC2018 Generation Em/F1 Read Comprehension 0.59/10.12 1.21/16.647 1.71/11.29 2.49/18.57 Dynamic 3.11/14.64 5.68/23.22
DRCD Generation Em/F1 Read Comprehension 0/4.62 0.8/9.99 0.22/5.17 2.47/12.48 Dynamic 0.15/7.14 5.31/18.29

DuReader Generation Rouge-1 Read Comprehension 16.63 21.07 16.42 20.18 6,6 17.85 21.43
WebQA Generation Em/f1 Closed-Book QA 6/12.59 6/16.32 6/11.82 12/23.39 8,8 4/12.23 24/33.94
PD-CFT Generation Acc Cloze(without choices) 35.73/38.99 38.47/42.39 33.3/39.73 38.8/41.61 3,3 32.03/39.84 39.07/42.05

CMRC2017 Generation Acc Cloze(without choices) 24.60 37.83 25.40 38.00 3,3 23.50 36.33
CHID PPL Acc Cloze(multi-choices) 68.62 68.73 67.91 68.16 3,3 66.82 66.56

CMRC2019 PPL Acc Cloze (multi-choices) 47.69 61.93 47.99 61.54 2,2 47.20 62.42
CMNLI PPL Acc Natural Language Inference 49.10 50.20 47.56 49.54 6,12 49.29 51.17
OCNLI PPL Acc Natural Language Inference 44.20 42.61 44.30 44.00 3,6 44.00 46.78
TNEWS PPL Acc Text classification 65.44 60.95 69.50 57.95 6,6 70.17 63.62

IFLYTEK PPL Acc Text classification 68.91 74.26 79.84 79.03 3,3 83.99 80.15
AFQMC PPL Acc Sentence Pair Similarity 66.34 59.29 39.70 64.62 4,4 38.29 69.00

CSL PPL Acc Keyword Recognition 52.30 50.50 51.20 50.90 10,10 50.50 52.00
CLUEWSC2020 PPL Acc WSC 73.684 73.36 73.684 75.33 14,14 70.065 72.70

C3 PPL Acc Common Sense Reasoning 49.81 53.42 51.43 52.82 3,3 51.60 53.64

scores for both reading comprehension and closed-book QA tasks, 7 points in scores for cloze (without choices) tasks
respectively. Regarding perplexity-tasks, PanGu-αis comparable to CPM 2.6B on natural language inference with
CMNLI and OCNLI datasets, while it is slightly worse than CPM on classification tasks with TNEWS and IFLYTEK
datasets. We suppose that the main factor that contributes to the different performance of CPM 2.6B and PanGu-α
2.6B is the training data. We collect massive and diverse data from a wide range of sources, which allows our PanGu-α
model to handle more diverse tasks.

Table 10: Performance comparison of PanGu-α 2.6B v.s. PanGu-α 13B on few-shot NLP tasks.

Zero-Shot One-Shot Few-Shot
Dataset Method Metrics Task Types PanGu-α 2.6B PanGu-α 13B PanGu-α 2.6B PanGu-α 13B #Shot(K) PanGu-α 2.6B PanGu-α 13B

CMRC2018 Generation Em/F1 Read Comprehension 1.21/16.65 1.46/19.28 2.49/18.57 3.76/21.46 Dynamic 5.68/23.22 9.76/29.23
DRCD Generation Em/F1 Read Comprehension 0.8/9.99 0.66/10.55 2.47/12.48 4.22/15.01 Dynamic 5.31/18.29 9.09/23.46

DuReader Generation Rouge-1 Read Comprehension 21.07 24.46 20.18 25.99 6,6 21.43 27.67
WebQA Generation Em/f1 Closed-Book QA 4.43/13.71 5.13/14.47 10.22/20.56 13.43/24.52 8,8 23.71/33.81 31.18/41.21
PD-CFT Generation Acc Cloze(without choices) 38.47/42.39 43.86/46.60 38.8/41.61 40.97/45.42 3,3 39.07/42.05 41.13/45.86

CMRC2017 Generation Acc Cloze(without choices) 37.83 38.90 38.00 38.40 3,3 36.33 37.86
CHID PPL Acc Cloze(multi-choices) 68.73 70.64 68.16 70.05 3,3 66.56 70.91

CMRC2019 PPL Acc Cloze (multi-choices) 68.22 70.54 68.05 70.02 2,2 66.26 71.28
CMNLI PPL Acc Natural Language Inference 50.20 48.44 49.54 46.81 6,12 51.17 46.18
OCNLI PPL Acc Natural Language Inference 42.61 41.53 44.00 44.10 3,6 46.78 46.44
TNEWS PPL Acc Text classification 60.95 60.26 57.95 63.83 6,6 63.62 65.17

IFLYTEK PPL Acc Text classification 74.26 73.80 79.03 78.95 3,3 80.15 80.34
AFQMC PPL Acc Sentence Pair Similarity 59.29 65.76 64.62 63.55 4,4 69.00 68.91

CSL PPL Acc Keyword Recognition 50.50 49.30 50.90 50.20 10,10 52.00 55.70
CLUEWSC2020 PPL Acc WSC 73.36 75.00 75.33 75.00 14,14 72.70 78.62

C3 PPL Acc Common Sense Reasoning 53.42 54.47 52.82 53.92 3,3 53.64 54.58
WPLC PPL ppl Chinese WPLC 16.70 19.18 - - - - -

15

17 (1) total: 61

Pangu-ケ: Experimental results

TECHNICAL REPORT - APRIL 27, 2021

Figure 10: Prompt for perplexity-based tasks of OCNLI

Table 9: Performance comparison of CPM 2.6B v.s. PanGu-α 2.6B on few-shot NLP tasks.

Zero-Shot One-Shot Few-Shot
Dataset Method Metrics Task Types CPM 2.6B PanGu-α 2.6B CPM 2.6B PanGu-α 2.6B #Shot(K) CPM 2.6B PanGu-α 2.6B

CMRC2018 Generation Em/F1 Read Comprehension 0.59/10.12 1.21/16.647 1.71/11.29 2.49/18.57 Dynamic 3.11/14.64 5.68/23.22
DRCD Generation Em/F1 Read Comprehension 0/4.62 0.8/9.99 0.22/5.17 2.47/12.48 Dynamic 0.15/7.14 5.31/18.29

DuReader Generation Rouge-1 Read Comprehension 16.63 21.07 16.42 20.18 6,6 17.85 21.43
WebQA Generation Em/f1 Closed-Book QA 6/12.59 6/16.32 6/11.82 12/23.39 8,8 4/12.23 24/33.94
PD-CFT Generation Acc Cloze(without choices) 35.73/38.99 38.47/42.39 33.3/39.73 38.8/41.61 3,3 32.03/39.84 39.07/42.05

CMRC2017 Generation Acc Cloze(without choices) 24.60 37.83 25.40 38.00 3,3 23.50 36.33
CHID PPL Acc Cloze(multi-choices) 68.62 68.73 67.91 68.16 3,3 66.82 66.56

CMRC2019 PPL Acc Cloze (multi-choices) 47.69 61.93 47.99 61.54 2,2 47.20 62.42
CMNLI PPL Acc Natural Language Inference 49.10 50.20 47.56 49.54 6,12 49.29 51.17
OCNLI PPL Acc Natural Language Inference 44.20 42.61 44.30 44.00 3,6 44.00 46.78
TNEWS PPL Acc Text classification 65.44 60.95 69.50 57.95 6,6 70.17 63.62

IFLYTEK PPL Acc Text classification 68.91 74.26 79.84 79.03 3,3 83.99 80.15
AFQMC PPL Acc Sentence Pair Similarity 66.34 59.29 39.70 64.62 4,4 38.29 69.00

CSL PPL Acc Keyword Recognition 52.30 50.50 51.20 50.90 10,10 50.50 52.00
CLUEWSC2020 PPL Acc WSC 73.684 73.36 73.684 75.33 14,14 70.065 72.70

C3 PPL Acc Common Sense Reasoning 49.81 53.42 51.43 52.82 3,3 51.60 53.64

scores for both reading comprehension and closed-book QA tasks, 7 points in scores for cloze (without choices) tasks
respectively. Regarding perplexity-tasks, PanGu-αis comparable to CPM 2.6B on natural language inference with
CMNLI and OCNLI datasets, while it is slightly worse than CPM on classification tasks with TNEWS and IFLYTEK
datasets. We suppose that the main factor that contributes to the different performance of CPM 2.6B and PanGu-α
2.6B is the training data. We collect massive and diverse data from a wide range of sources, which allows our PanGu-α
model to handle more diverse tasks.

Table 10: Performance comparison of PanGu-α 2.6B v.s. PanGu-α 13B on few-shot NLP tasks.

Zero-Shot One-Shot Few-Shot
Dataset Method Metrics Task Types PanGu-α 2.6B PanGu-α 13B PanGu-α 2.6B PanGu-α 13B #Shot(K) PanGu-α 2.6B PanGu-α 13B

CMRC2018 Generation Em/F1 Read Comprehension 1.21/16.65 1.46/19.28 2.49/18.57 3.76/21.46 Dynamic 5.68/23.22 9.76/29.23
DRCD Generation Em/F1 Read Comprehension 0.8/9.99 0.66/10.55 2.47/12.48 4.22/15.01 Dynamic 5.31/18.29 9.09/23.46

DuReader Generation Rouge-1 Read Comprehension 21.07 24.46 20.18 25.99 6,6 21.43 27.67
WebQA Generation Em/f1 Closed-Book QA 4.43/13.71 5.13/14.47 10.22/20.56 13.43/24.52 8,8 23.71/33.81 31.18/41.21
PD-CFT Generation Acc Cloze(without choices) 38.47/42.39 43.86/46.60 38.8/41.61 40.97/45.42 3,3 39.07/42.05 41.13/45.86

CMRC2017 Generation Acc Cloze(without choices) 37.83 38.90 38.00 38.40 3,3 36.33 37.86
CHID PPL Acc Cloze(multi-choices) 68.73 70.64 68.16 70.05 3,3 66.56 70.91

CMRC2019 PPL Acc Cloze (multi-choices) 68.22 70.54 68.05 70.02 2,2 66.26 71.28
CMNLI PPL Acc Natural Language Inference 50.20 48.44 49.54 46.81 6,12 51.17 46.18
OCNLI PPL Acc Natural Language Inference 42.61 41.53 44.00 44.10 3,6 46.78 46.44
TNEWS PPL Acc Text classification 60.95 60.26 57.95 63.83 6,6 63.62 65.17

IFLYTEK PPL Acc Text classification 74.26 73.80 79.03 78.95 3,3 80.15 80.34
AFQMC PPL Acc Sentence Pair Similarity 59.29 65.76 64.62 63.55 4,4 69.00 68.91

CSL PPL Acc Keyword Recognition 50.50 49.30 50.90 50.20 10,10 52.00 55.70
CLUEWSC2020 PPL Acc WSC 73.36 75.00 75.33 75.00 14,14 72.70 78.62

C3 PPL Acc Common Sense Reasoning 53.42 54.47 52.82 53.92 3,3 53.64 54.58
WPLC PPL ppl Chinese WPLC 16.70 19.18 - - - - -

15

17 (2) total: 61

Pangu-ケ: Release (May 2021)

18 total: 61

Pangu-ケ: Influence

19 total: 61

Pangu-ケ: Examples - Text summarization

20 total: 61

Pangu-ケ: Examples - Title generation

21 total: 61

Pangu-ケ: Examples - Open domain QA

22 total: 61

Pangu-ケ: Examples - Dialog generation

23 total: 61

Pangu-ケ: Examples - Stylized text generation

24 total: 61

Pangu-ケ: Examples - Gaokao essay generation

25 total: 61

Pangu-ケ: Examples - Advertisement generation

26 total: 61

Pangu Models

PanGu-ケ: A Chinese 200-billion-parameters dense language lodel

Pangu-ィ series: a multi-domian one-trillion-parameters sparse language model

Content

Pangu-ィ:
A multi-domian one-trillion-parameters sparse language model

PANGU-Σ: TOWARDS TRILLION PARAMETER LANGUAGE
MODEL WITH SPARSE HETEROGENEOUS COMPUTING

TECHNICAL REPORT

Xiaozhe Ren1∗ Pingyi Zhou1∗ Xinfan Meng1∗ Xinjing Huang2∗ Yadao Wang1∗

Weichao Wang1 Pengfei Li1 Xiaoda Zhang2 Alexander Podolskiy1 Grigory Arshinov 1

Andrey Bout 1 Irina Piontkovskaya 1 Jiansheng Wei1 Xin Jiang1

Teng Su2 Qun Liu1 Jun Yao1

1Noah’s Ark Lab, Huawei Technologies
2Distributed and Parallel Software Lab, Huawei Technologies

ABSTRACT

The scaling of large language models has greatly improved natural language understanding, gener-
ation, and reasoning. In this work, we develop a system that trained a trillion-parameter language
model on a cluster of Ascend 910 AI processors 2 and MindSpore framework 3, and present the lan-
guage model with 1.085T parameters named PanGu-Σ. With parameter inherent from PanGu-α [1],
we extend the dense Transformer model to sparse one with Random Routed Experts (RRE), and
efficiently train the model over 329B tokens by using Expert Computation and Storage Separation
(ECSS). This resulted in a 6.3x increase in training throughput through heterogeneous computing.
Our experimental findings show that PanGu-Σ provides state-of-the-art performance in zero-shot
learning of various Chinese NLP downstream tasks. Moreover, it demonstrates strong abilities when
fine-tuned in application data of open-domain dialogue, question answering, machine translation and
code generation.

Keywords Large Language Models · Distributed Training · Natural Language Processing

1 Introduction

Large Language Models (LLMs) [2, 3, 1, 4, 5, 6, 7, 8, 9, 10, etc.] have demonstrated unprecedented capabilities and
potential in the areas of natural language understanding, generation and reasoning. By utilizing vast amount of textual
data, the performance of language models scales up with compute budget and model parameters, demonstrating strong
zero/few-shot learning abilities or even emergence abilities [4, 11]. Several large language models with hundreds
of billion parameters have been published since GPT-3 [2], including but not limited to Megatron-Turing NLG [12],
PanGu-α [1], ERNIE 3.0 Titan [8], Gopher [5], PaLM [4], OPT [6], Bloom [10], and GLM-130B [9]. Researchers
start to build even larger language models with more than one trillion parameters. Typically, this is accomplished by
leveraging sparsely-activated models such as Mixture-of-Experts (MoE) [13]. Among the trillion-parameter models
currently in existence, there are several noteworthy work such as Switch-C [14], GLaM [15], MoE-1.1T [16], Wu Dao
2.0 [17], and M6-10T [18]. However, only a select few have published comprehensive evaluation results over a wide
range of tasks while simultaneously achieving anticipated performance. In our experience, the primary difficulty lies in
the scaling efficiency.

∗Equal Contribution
2https://e.huawei.com/en/products/servers/ascend
3https://www.mindspore.cn/en

ar
X

iv
:2

30
3.

10
84

5v
1

 [
cs

.C
L

]
 2

0
M

ar
 2

02
3

Ren et al. “PanGu-ィ: Towards Trillion Parameter Language Model...” arxiv:2303.10845. 2023-03-19.

27 (1) total: 61

Pangu-ィ:
A multi-domian one-trillion-parameters sparse language model

▶ One trillion parameters sparse LM
▶ Fully based on Huawei technology stack
▶ Long time stable training based on 512 Ascend D910 Card + MindSpore
▶ Extremely simple expert routing strategy: Ramdomly Routing Experts (RRE)
▶ Pluggable multi-domain multi-task life-long learning, with lossless expert-tailor
▶ Enabling industrial deployment on single server (with 8 Ascend cards)
▶ SotA on zero-shot and fine-tuned performance on Chinese downstream tasks,

including QA, dialog and translation
Ren et al. “PanGu-ィ: Towards Trillion Parameter Language Model...” arxiv:2303.10845. 2023-03-19.

27 (2) total: 61

Pangu-ィ: ArchitecturePangu-Sigma Architecture

Attention

Feed Forward

Attention

Emb. 1

Autoregressive Loss

Emb. 2 Emb. 3 Emb. 4

Exp
ert

Exp
ert

Exp
ert

Exp
ert

Exp
ert

Exp
ert

Exp
ert

Exp
ert

Data
Domain

1

Data
Domain

2

Data
Domain

3

Data
Domain

4

N

M

Higher Layers: Grouped RRE Repre.

Lower Layers: Universal Dense Repre.

Mixted Data/Task Training

Mixed Dense/Sparse Architecture

While M=0 or Expert=1
Degraded to dense architecture
Equivalent to Pangu-Alpha

While N=0
Fully sparse architecture

28 total: 61

Pangu-ィ: Randomly-Routed Experts (RRE)Extremely Simple Expert Routing: Randomly-Routed Experts, RRE)

a b c d e

Exp
ert3

Exp
ert4

Exp
ert5

Exp
ert6

Exp
ert7

Exp
ert8

Exp
ert1

Exp
ert2

a b c d e

a b c d e

Attention

a b c d e

Exp
ert3

Exp
ert4

Exp
ert5

Exp
ert6

Exp
ert7

Exp
ert8

Exp
ert1

Exp
ert2

a b c d e

Attention

Mixture of Expert
Google 2017

Switch Transformer
Google 2021

Randomly Connected NN
Meta 2019

[a:3, b:5,c:1, d:5, e:8]

[a:1, b:1,c:3, d:7, e:5]

29 total: 61

Pangu-ィ: Multi-task Life-long LearningPangu-Sigma Multi-task Life-long Learning

Pangu-Alpha Pangu-Sigma Initialization
• Inherited from Pangu-Alpha

FFN2MOE

Pangu-Sigma Pretraining Pangu-Sigma Life-long Learning
• Add new experts
• Delete old experts

Two-layer RRE

✓ Task-expert fine-grained Control

✓ Expert Workload Balance

✓ Grouped All-to-All Communication

FFN2MOE

✓ Inherited knowledge from

Pangu-Alpha

✓ Speed-up convergence

Domain Expanding

✓ Monolingual to multilingual

✓ Single domain to multi-domain

Expert Editing

✓ Expert add/delete/edit

✓ Single Domain Fast deployment

30 total: 61

Pangu-ィ: High Performance Heterogeneous TrainingPangu-Sigma High Performance Heterogeneous Training

激活

未激活

稀疏子图激活

Forward

Backward

模型参数量M

稀疏度s (0<s<1)

激活参数量Ma

2*Ma FP16 Grad

4*Ma Cast to FP32 Grad

Adam Optimizer

Device

Device to Host

4*Ma 4*Ma 4*Ma

FP32
weight

FP32
momentum

FP32
variance

2*Ma

FP16
子图 weight

Host to Device

Cast to FP16

2*MFP16
全图 weight

Ma ≈ M * s

2*Ma
FP16

子图 weight

Host

0

10000

20000

30000

40000

50000

60000

512P MindSpore+Ascend+KunPeng

1.085万亿参数盘古Sigma

西安超算吞吐性能（Tokens/s）

盘古α-MOE（万亿）

盘古Sigma（万亿）

盘古α（千亿/非异构）

1.085万亿参数盘古Sigma收敛曲线
(持续稳定训练中)

31 total: 61

Pangu-ィ: Industrial DeploymentPangu-Sigma Industrial Deployment

…

3 8 0 亿 参 数

互 联 网 行 业 应 用 模 型

8 卡 推 理

3 8 0 亿 参 数

对 话 任 务 模 型

8 卡 推 理

盘 古 S i g m a

3 0 倍

无 损 剪 枝

万亿参数基础模型

流水线

流水线

流水线

3 8 0 亿 参 数

金 融 行 业 应 用 模 型

8 卡 推 理

迭代

行业/领域子模型部署万亿参数盘古Sigma预训练

盘古Sigma
512卡

Ascend+MindSpore
高性能训练

效 率 提 升

更 佳 模 型 性 能

10 -１0０倍

A I 工 业 化 开 发

模型泛化 极大节省训练投入

流水线 工具集成，训练更快

32 total: 61

Pangu-ィ: Training ConfigurationTraining Configuration

ModelData

Data size：304.12B Tokens（1 TB）：

◼ Chinese：75.47B Tokens

◼ English：75.9B Tokens

◼ English-Chinese：77.51B Tokens

◼ Code：75.24B Tokens

Computing

◼ Hardware：

✓ 西安超算：512卡Ascend910✓ General domain

✓ Financial, Medical, Law, …

✓ General domain

✓ General domain

✓ News

✓ Python

✓ Java

◼ Software：

✓ MindSpore v1.6

✓ CANN c80

Platform：Huawei AI Stack

◼ Training time：

✓ 100 days

#Parameters：1.085Trillion

◼ Model Arch.：Decoder+RRE

◼ Model Specification:
✓ Layers：40

✓ RRE Layers：8

✓ Hidden：5120

✓ FFN：20480

✓ Expert Per Layer：640

◼ Training Specification：
✓ Ascend+KunPeng Heterogeneous Training

✓ 8-way model parallel

✓ 64-way expert parallel

✓ 64way data parallel

33 total: 61

OPT-175B: Longest stable training duration: 2.8 daysOPT-175B: Longest stable training duration: 2.8 days

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/56_percent_update.md

992 80GB A100 GPUs + PyTorch Megatron

34 total: 61

Pangu-ィ: Stable training for 25 days until manual termination
Pangu-Sigma: Stable training for 25 days until manual termination

35 total: 61

Pangu-ィ: Performance on NLP downstream tasksPerformance on NLP downstream tasks
Outperform Baidu Ernie 3.0 on zero-shot evaluation on 10 Chinese downstream tasks

Model CMRC
(em/f1)

DRCD
(em/f1)

C3
(acc)

OCNLI
(acc)

Tnews
(acc)

Dureader
（rouge-1）

Iflytek
(acc)

Afqmc
(acc)

CSL
(acc)

Cmnli
(acc)

Cluewsc
(acc)

Pd
(acc)

Cft
(acc)

Cmrc2017
(acc)

Average

Pangu
alpha
13B

1.46/
19.28

0.66/
10.55 54.47 41.53 60.26 24.46 73.80 65.76 49.30 48.44 75.00 43.86 46.60 38.90 46.59

Baidu
ERNIE3.0

10B

7.61/
25.61

10.58/
26.29 52.62 44.31 68.40 29.79 75.34 68.99 55.63 49.41 78.38 66.07 49.30 56.66 53.34

Baidu
ERNIE3.0

260B

16.62/
44.2

21.08/
37.83 54.85 44.61 72.60 32.13 79.84 68.99 55.80 51.70 81.08 67.06 66.14 74.63 59.39

Pangu
Sigma38B
Chinese

Sub-model

20.88/
50.83

26.82/
48.09 56.49 46.03 70.82 32.29 73.57 68.84 60.33 50.53 83.88 78.47 85.87 82.73 63.48

0

20

40

60

80

100
CMRC2018

DRCD

C3

OCNLI

TNEWS

DuReader

IFLYTEK

AFQMC

CSL

CMNLI

CLUEWSC

PD

CFT

CMRC2017

Chinese Tasks Zero-Shot Eval.

盘古alpha（13B）

百度ERNIE3.0（10B）

百度ERNIE3.0 （260B）

盘古Sigma中文子模型

（38B）

46.59

53.34

59.39

63.48

盘古alpha（13B）

百度ERNIE3.0（10B）

百度ERNIE3.0 （260B）

盘古Sigma中文子模型（38B）

Chinese Tasks Zero-Shot Eval. Average

36 total: 61

Pangu-ィ: Downstream Tasks - DialogExperiments: Dialog

Human Metrics

Model
Distinct

1
Distinct

2
BLEU-

2
BLEU-

3
Semantic-
coherence

CDialGPT 0.035 0.172 0.1405 0.088 0.344

EVA 0.067 0.313 0.169 0.103 0.393

EVA2.0 0.073 0.341 0.169 0.104 0.458

Pangu-BOT 0.089 0.337 0.171 0.106 0.459

Pangu-Sigma 0.109 0.369 0.177 0.110 0.502

Models Adequacy 具体性 趣味性 事实性错
误

安全性 综合

CDialGPT 0.597 0.680 0.143 0.070 0.970 0.664

EVA 0.507 0.743 0.210 0.080 0.953 0.667

EVA2.0 0.677 0.783 0.287 0.070 0.980 0.731

Pangu-BOT 0.810 0.803 0.293 0.050 0.987 0.769

Pangu-Sigma 0.830 0.857 0.340 0.040 0.993 0.796

Automatic Metrics

Dialog Examples

37 total: 61

Pangu-ィ: Downstream Tasks - Question and Answering

Experiments: Question Answering

QA metrics QA Examples

Model Precision Recall F1 Human Eval.

CDialGPT 0.033 0.067 0.041 0.036

EVA 0.008 0.051 0.012 0.036

EVA2.0 0.082 0.139 0.103 0.119

Pangu-BOT 0.509 0.761 0.556 0.738

Pangu-Sigma 0.574 0.822 0.621 0.774

38 total: 61

Pangu-ィ: Downstream Tasks - TranslationExperiments: Translation

WMT20 Chinese-English

Models BLEU

MT5-XXL-13B 24

CPM-2-11B 26.2

ERNIE3.0-10B 26.8

Pangu-Sigma-38B
Chinese-English
Low Resources

30.99

Pangu-Sigma-38B
Chinese-English
High Resources

36.63

Chinese-English Translation Examples

WMT17 Chinese-English

Model BLEU

CEMAT 22.82

Pangu-Sigma-38B
Chinese-English

23.52

WMT17 English-Chinese

Model BLEU

CEMAT 35.82

Pangu-Sigma-38B
Chinese-English

38.82

39 total: 61

Large Language Models (LLMs): Background

Pangu Models

LLM Research in Huawei Noah’s Ark Lab

Future Work

Content

LLM Research in Huawei Noah’s Ark Lab

Multi-modal Language Models

Efficient Training and Deployment

Arabic Language Models

Information Retrieval

Question Answering

Machine Translation

Poem Generation

Code Generation

Math Word Problem Solving

Content

Wukong FILIP：
Fine-grained Interactive Language-Image Pre-Training

Image Encoder Text Encoder

盯 着 食 物 的 小 猫 咪[CLS]

Linear Projection

Preload & locked

Flattened Patches

1 2 63 4 50 * 0 1 2 3 4 5 6 7 8

Text Embedding

*

Linear Layer

[CLS]

1

{ }

𝐼 ∈{ }

max
𝑇∈{ }
(𝐼 ∙ 𝑇)

1

{ }

𝑇 ∈{ }

max
𝐼∈{ }
(𝑇 ∙ 𝐼)+Visual/Textual

features

Visual/Textual
input token

Positional
embedding

Pretrained

models for other

languages

Linear Layer

Token-wise similarityGlobal similarity

* [CLS]
⊤·

Figure 1: The base model consists of an image encoder and a text encoder with visual tokens and
textual tokens as inputs. The input tokens from the two modalities are then concatenated and are
added with position embeddings indicating token positions. For the image encoder, weights from
an external model trained on datasets of other language are preloaded and locked. We compute the
global similarity and token-wise similarity in the contrastive pre-training loss.

et al., 2021)) and different methods (CLIP (Radford et al., 2021), FILIP (Yao et al., 2022), and
LiT (Zhai et al., 2021b)). As shown in Figure 1, we follow the popular dual-encoder architecture
for vision-language representation learning, with the contrastive learning objective. We also provide
an extensive benchmarking of the released models on various downstream tasks, such as zero-shot
image classification and Img2Text/Text2Img retrieval. Interesting observations can be found from
the results: Firstly, by transferring the image encoder trained on English dataset, we find that it can
still work well with Chinese texts for cross-modal pre-training and achieve a good performance on
Chinese downstream tasks. Secondly, we find that cross-modal token-wise similarity from FILIP
complements various patch-based visual encoders like SwinT and can contribute to better visual and
textual representations. More findings can be found in Section 5.

Experiments show that Wukong can serve as a promising Chinese pre-training dataset for different
cross-modal learning methods. The pre-trained models show prominent performance on various
downstream tasks such as zero-shot image classification and image-text retrieval. Specifically, for
zero-shot image classification, our model reaches up to 61.5% average top-1 accuracy on 17 datasets.
For the retrieval task, our best model significantly outperforms WenLan 2.0 on AIC-ICC by 10%
of top-1 recall for image-to-text retrieval, and 11.6% of top-1 recall for text-to-image retrieval
respectively. Visualization on word-patch alignment also shows that our model learns meaningful
finer-grained features via the token-wise similarity.

In summary, our main contributions are:

(a) A public larger-scale Chinese vision and language pre-training dataset with 100 million image-
text pairs is released, covering a more comprehensive range of concepts.

(b) We release a group of large-scale VLP models pre-trained with various popular architectures
and methods. An extensive benchmarking of the released models is also provided.

(c) Our pre-trained model shows state-of-the-art performance on Chinese benchmarks such as
zero-shot image classification tasks consisting of seventeen datasets and image-text retrieval
tasks consisting of five datasets.

2 Related Work

2.1 Vision-Language Pre-training (VLP) Models

Pre-training on a large self-supervised dataset then fine-tuning on various downstream tasks seems to
become a de facto practice in the domains of natural language processing, e.g., BERT, GPT (Devlin
et al., 2019; Brown et al., 2020) and computer vision, e.g., MOCO, MAE (He et al., 2020, 2021;

3

WukongViTWukongSwinRaw Image

(a) 豆娘 (damselfly: 1, 2)

(b) 救生艇 (lifeboat: 1 to 3)

(c) 蜂鸟 (hummingbird : 1, 2)

(e) 教堂 (church: 1, 2)

(f) 电风扇 (electric fan: 1 to 3)

(d) iPod (iPod: 1)

WukongViTWukongSwinRaw Image

Figure 4: Visualization of word-patch alignment. We randomly choose six classes in the Chinese
ImageNet dataset. Each Chinese label name is used as a prompt, whose English text is described in
the parentheses. Behind which, the tail numbers indicate the location indices of this class label in the
tokenized textual input. Take (a) as an example, the number 0 always represents [CLS], the number 1
is the tokenized “豆” and the number 2 is “娘”. Indices of the tokenized label name are highlighted
in red.

As shown in the Figure 4, we visualize images from six labels from the Chinese ImageNet(i.e., dam-
selfly; lifeboat; hummingbird; iPod; church and electric fan). Then we apply the same visualization
method from FILIP (Yao et al., 2022), to align textual tokens and image patch tokens. In particular,
we calculate the token-wise similarity between each image patch token and all tokenized textual
tokens from the text label, i.e., [CLS]{class label tokens}[EOS], as illustrated in the Section 4.3. For
each image patch, the position index of textual tokens with the maximum similarity is considered as
its predicted text token. Note that the Chinese class label is often tokenized to more than one token.
We highlight all the predicted position indices that correspond to the class label, and place them at
the center of the corresponding patches. In addition, since we use the visual encoder ViT-L/14 in
WukongViT, each image is patchified to 16×16. For the used Swin-L Transformer in WukongSwin, the
output resolution is H

32 × W
32 , that is, 7×7 patches. Therefore, WukongViT presents the more fine-cut

grids than WukongSwin.

From Figure 4, we surprisingly find that both models are able to predict image patches of the target
object. For WukongViT with more image patches, such word-patch alignment is more fine-grained
than WukongSwin. Take Figure 4 (e) as an example, WukongViT is even able to align Chinese tokens
“教” and “堂”, which means church as one word, to the smaller church in the bottom-right corner.
WukongViT also well outlines the hummingbird in the example Figure 4 (c), while WukongSwin often
aligns to the main body of the target object. However, since more fine-cut patches are presented, it
might bring noises at some point compared to WukongSwin. As in the (e) example, some obvious
wrongly predicted patches can be viewed for WukongViT, and similarly in Figure 4 (f), some image
patches surrounding the fan are predicted to token index 1. Note that this token “电” of index 1 means
electricity, which essentially is not direct to the meaning of fan. Another interesting observation is
that these Chinese pre-trained models are able to alight image patches to English tokens as shown in
Figure 4 (d). The main reason lies in that the vocabulary we used from BERT (Devlin et al., 2019)
also includes multilingual words such as “iPod”.

This visualization of word-patch alignment evidences the effectiveness of cross-modal token-wise
similarity even in the LiT-tuning setting. Though the visual encoder (i.e., ViT-L/14 or Swin-L) is
frozen in the pre-training phrase, the learnable linear projection layer on top of it, is still able to
align patches and words in a fine-grained manner. We also find that this token-wise similarity in loss

13

Technical report: https://arxiv.org/abs/2111.07783, https://arxiv.org/abs/2202.06767.pdf

40 total: 61

Wukong Dataset：
A 100 Million Large-scale Chinese Cross-modal Pre-training Benchmark

狗子示意来访人员要想进去,先过来扫码,狗子
还特意下来用嘴巴对着 (The dog signaled to the

visitors to scan the code first before entrance, and

the dog also deliberately came down and pointed

his mouth at it.)

简欧三居室酒柜装修效果图 (Renderings

of the decoration of the wine cabinet in the

three bedrooms of Europe)

你好,我们是社区工作人员,是来做接种
疫苗排查工作的 (Hello, we are

community workers and are here to do

vaccination screening.)

【互邦工厂旗舰店】上海互邦轮
椅钢管轻便手动折叠轮椅
(【Hubang factory flagship store】
Shanghai Hubang wheelchair steel

pipe lightweight manual folding

wheelchair)

13-14赛季 英超第5轮 曼城 vs
曼联 13.09.22 (13-14 Premier

League Round 5 Manchester City

vs Manchester United 13.09.22)

中国骄傲中国女排成功抵达东京不到6天就将在
赛场上再展风采 (China pride, the Chinese

women's volleyball team, will show its style on the

field in less than 6 days right after its arrival in

Tokyo)

Figure 2: Examples of image-text pairs in our Wukong dataset. This large-scale dataset covers a
diverse range of concepts from the web, and suits vision-language pre-training.

of 200K queries. This base query list is taken from (Song et al., 2018), and then filtered according
to the frequency of Chinese words and phrases appearing in Huawei’s massive news text corpus.
After the query list is constructed, we send each query to Baidu Image Search Engine, to get a list of
image URLs and corresponding caption information. To keep a balance between different queries,
we search for at most 1000 samples per query. Images are then downloaded with previously-obtained
image URLs. In this way, we collect a total of 166 million raw <image, text> pairs. Then following
common practices (Sharma et al., 2018; Changpinyo et al., 2021; Jia et al., 2021), we apply a series
of filtering strategies described in the below section to construct the final Wukong dataset. Figure 2
shows some samples within our dataset.

3.1 Image-based Filtering

We first filter the data according to the size and aspect ratio of the image. Only images with both
dimensions greater than 200 pixels, and the ratio of large-to-small dimensions is no more than 3
are kept. In this way, we filter out images that are too small, or are very tall or wide, which can
be of low-resolution after image augmentations like upsampling and square cropping used during
pre-training (Yao et al., 2022).

3.2 Text-based Filtering

Secondly, to select samples with high-quality Chinese descriptions of the corresponding image, we
filter the data according to the language, length and frequency of the text accompanying an image.
Specifically, we first check the language and length. We keep sentences that contain at least one
but fewer than 32 Chinese words. We also discard meaningless image descriptions like “000.jpg”
from the text. Afterward, texts paired with too many images are usually irrelevant to the content
of the images, like “查看源网页” (View source page), “展开全文” (Expand text), “摄影部落”
(Photography community). In practice, we set this threshold as 10, i.e., we discard the image-text
pairs whose text appears more than 10 times in the whole corpus collected. To protect the privacy
of the individuals appearing in the text, we substitute person names with a special token “<人名>”

5

Dataset release: https://wukong-dataset.github.io/wukong-dataset/

41 total: 61

Wukong DetCLIP：
Dictionary-Enriched Visual-Concept Paralleled Pre-training for Open-world Detection

▶ 外部知识库引入：引入wordnet来提供类别之间的先验关系
▶ 自动目标类别生成：通过融合开集检测和captioning任务来直接生成预测目标的类别，
无需人工指定。

▶ 细粒度文本对齐预训练，百万级高分辨率数据大规模多机多卡并行训练。
▶ 在LVIS数据集上的检测精度已超过GLIP模型14.4% mAP，获得ECCV2022开集检测竞
赛冠军。

[word1: def1]
[word2: def2]

...
[wordL: defL] Detection

Dataset

Image
Encoder

Grounding
Dataset

Image text
pair Dataset

Concept
Enrichment

Partial
Annotation
Enrichment

Alignment
Loss

person

laptop

clock

...

def: a human being.

def: a protable computer in you lap.

def: ...

def: a timepiece shows time of day.
Concept Enrichment

def: a human being.

A child
recieves a

new laptop
from his
father.

a child

a new laptop

shepherd dog

...

a child

a new laptop

his father

Paralleled Concept
 Formulation +Negative Samples

person

laptop

clock

...

Paralleled
 Formulation

Grounding/Image Text Pair Dataset

Detection Dataset

Text Encoder

No interaction
between Pseudo labeling

(Label Completion)

Concept
Dictionary

Figure 5: Overall architecture and the details of utilizing concept dictionary O. (a) DetCLIP contains
an image encoder Φi to obtain region features F I and a text encoder Φt to get embeddings FT for
each enriched concept p∗n. Then the region-concept alignment loss LALI is performed. Note that
the box regression loss LREG is only adopted on detection datasets. (b) A concept dictionary O is
introduced to enrich the current concept with prior knowledge and provide negative category samples
for construction of the alignment loss.

3.2.2 Knowledge Enrichment with Concept Dictionary

Concept Enrichment. Based on the designed concept dictionary, we first retrieve the definition
for each input concept to provide the prior knowledge (see Fig.5(b)). During pre-training, for each
concept pn in the training set, we can directly use its definition if pn is included in the dictionary
O. If we cannot find a direct match in O, we will try to locate the most related concept in O by
calculating a similarity matrix S′ ∈ RL. The S′ is calculated via the dot-product of the embeddings
from a pre-trained text encoder such as FILIP [52] with pn and all concept names {ol}Ll=1 as input.
Then we can find the most related concept {ol∗ , where l∗ = argmaxl(S

′(l))} in the dictionary, to
retrieve an approximate definition defl∗ . The pn is then enriched with the retrieved definition and
reformatted as {p∗n} = {pn, defl∗}. An example of the enriched text input P ∗ = {p∗n}Nn=1 is:

P ∗ = [“person, a human being.”, “bicycles, a wheeled vehicle that has two wheels and is moved by
foot pedals.”, ... , “toothbrush, small brush has long handle used to clean teeth.”]

Partial Annotation Enrichment. In the grounding or image-text pair data, only main objects
that people care about are labeled in the caption, which is known as the partial labeling problem.
Compared with standard detection datasets which have sufficient positive and negative classes for
each image, pre-training with grounding and image-text pair datasets encounters two severe issues: 1)
lack of annotations of negative concepts for learning discriminative concept embeddings; 2) lack of
annotations of partial positive concepts to efficiently train the model. For the first problem, DetCLIP
randomly samples the concepts in the constructed dictionary O as the negative concepts to construct
the alignment loss, instead of directly padding empty inputs (Fig.5(b)). Note that since the number
of concepts in the dictionary O is large (i.e., about 14k), the probability that the sampled concepts
are indeed in the image is extremely small. For the second problem, to perform label completion
on image-text pair data during pseudo labeling, we add all the concepts in dictionary {ol}Ll=1 as the
additional category inputs, instead of using the original noun phrase in the caption to calculate the
similarity matrix. Therefore, the concepts shown in the image while not in the caption can also be
labeled and then get pre-trained. An illustration is also shown in Fig.7 to qualitatively verify the
effectiveness of label completion.

3.3 Model Architecture/Training Objective

As shown in Fig.5, the basic architecture of DetCLIP contains an image encoder Φi to generate
the region features F I ∈ RM ·D from the input image X , and a text encoder Φt to obtain the text
embeddings FT ∈ RN ·D for the concepts in P ∗, where M , N denote for the number of extracted
regions and input concepts, respectively. Then the alignment loss is constructed by calculating the
alignment score S ∈ RN ·M for all region-text pairs.

F I = Φi(X), FT = Φt(P
∗), S = 〈F I ,Transpose(FT)〉 (1)

With the ground-truth alignment matrix G ∈ RN ·M , the whole training objective L can be written as:

6

Paper: https://arxiv.org/abs/2209.09407

42 total: 61

Wukong Reader：
Multi-modal Pre-training for Fine-grained Visual Document Understanding
▶ 构建了文本行对比学习、掩码区域建模和文本行方格匹配等多种预训练目标，综合文
本、视觉表征和空间布局信息进行细粒度建模，学习统一的文档表示

▶ 在千万级文档数据（涵盖表单，宣传单，简历，科研论文等）上进行了无监督预训练，
在下游文档信息抽取、分类等多种下游任务超越业界SOTA

▶ 具备强大的多任务和领域迁移能力，支持扫描文档、PDF、幻灯片、海报、网页截图
等不同领域的文档理解与开放域信息抽取。

Paper: https://arxiv.org/abs/2212.09621
43 total: 61

LLM Research in Huawei Noah’s Ark Lab

Multi-modal Language Models

Efficient Training and Deployment

Arabic Language Models

Information Retrieval

Question Answering

Machine Translation

Poem Generation

Code Generation

Math Word Problem Solving

Content

Compression of Pre-trained Language Models
▶ Knowledge Distillation

▶ DistilBERT/BERT-PKD/MobileBERT/MiniLM(Task agnostic)
▶ Our Work: TinyBERT/Mate-KD/ALP-KD

▶ Quantization
▶ Q-BERT/Q8BERT
▶ Our Work: TernaryBERT/BinaryBERT
▶ Our Work: QuantGPT/QuantBART

(ACL2022 Outstanding Paper Award)

▶ Pruning/Slimmable
▶ LayerDrop
▶ Our Work: DynaBERT

▶ Model archetecture search
▶ Our Work: AutoTinyBERT

▶ Automatic feature generation:
▶ Our Work: GhostBERT

44 total: 61

TinyBERT: Distilling BERT for Natural Language Understanding

• Deployable BERT

• Transformer-layer distillation

• Embedding-layer distillation

• Prediction-Layer distillation

• Two-stage learning: general (pre-training)

distillation and the task-specific distillation

• 7.5x smaller and 9.4x faster on inference

• Ranked 1st at CLUE

• Accelerated on Bolt, on-device inference

cost 6ms on ARM A76 CPU

Published in EMNLP 2020: https://aclanthology.org/2020.findings-emnlp.372.pdf

45 total: 61

https://aclanthology.org/2020.findings-emnlp.372.pdf

EMNLP2021 Top-Cited Paper: TinyBERT ...

"Paper Digest Team analyze all papers published on EMNLP in the past years,
and presents the 10 most influential papers for each year."

https://www.paperdigest.org/2021/02/most-influential-emnlp-papers/

46 total: 61

https://www.paperdigest.org/2021/02/most-influential-emnlp-papers/

BinaryBERT: Pushing the Limit of BERT Quantization

Published in ACL-IJCNLP2021: https://arxiv.org/pdf/2012.15701.pdf

47 total: 61

https://arxiv.org/pdf/2012.15701.pdf

QuantGPT and QuantBART

𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐 𝒕𝒕𝒏𝒏

“She said …… good”
tokenize

Input sequence

…… Pull together
Push awayToken memory bank 𝑽𝑽𝒃𝒃

index update

Quantized Student Network

Embedding
Layer

Full-precision Teacher Network

…

Embedding
Layer

Transformer
Layer 1

Transformer
Layer L

…

Embedding
Layer

Transformer
Layer 1

Transformer
Layer L

…

Token-level Contrastive Distillation

𝒉𝒉𝒕𝒕𝟏𝟏
𝒕𝒕 𝒉𝒉𝒕𝒕𝟐𝟐

𝒕𝒕

𝒒𝒒𝒕𝒕𝟏𝟏
𝒔𝒔 𝒒𝒒𝒕𝒕𝟐𝟐

𝒔𝒔 𝒒𝒒𝒕𝒕𝒏𝒏
𝒔𝒔…

𝒉𝒉𝒕𝒕𝒏𝒏
𝒕𝒕…

ℓ𝒄𝒄𝒄𝒄𝒏𝒏𝒔𝒔

ℓ𝒅𝒅𝒅𝒅𝒔𝒔𝒕𝒕

Logit Distillation

𝒛𝒛𝒕𝒕𝟏𝟏
𝒔𝒔 𝒛𝒛𝒕𝒕𝟐𝟐

𝒔𝒔 𝒛𝒛𝒕𝒕𝒏𝒏
𝒔𝒔

𝒛𝒛𝒕𝒕𝟏𝟏
𝒕𝒕 𝒛𝒛𝒕𝒕𝟐𝟐

𝒕𝒕 𝒛𝒛𝒕𝒕𝒏𝒏
𝒕𝒕…

Embedding
Layer

Figure 5: The training workflow of the proposed method. For each token in the quantized network, we compute
both (i) the token-level contrastive distillation loss where the positive tokens and negative tokens are selected from
the full-precision teacher network; and (ii) the distillation loss on the logits. The embedding layer and all weights in
the Transformer layers are quantized with the proposed module-dependent dynamic scaling.

3 Proposed Method

Based on the observations in Section 2.2, we pro-
pose a quantization method which utilizes token-
level contrastive distillation to make the word em-
bedding distinguishable (Section 3.1) and a module-
wise dynamic scaling adjustment to learn better
clipping factors (Section 3.2).

3.1 Token-level Contrastive Distillation

The proposed token-level contrastive distillation
contrast among tokens instead of sequences se-
quence, to learn distinguishable representations
for each token. Inspired by Baevski et al. (2020),
which uses in-utterance representation at different
positions of the same utterance as negatives for
speech feature learning, for each token of the quan-
tized network, we use the representation of the
same token from the full-precision teacher network
as its positive, while representations of other to-
kens in the same sequence as negatives (Figure 5).
Inspired by He et al. (2020) which uses a momen-
tum encoder for more consistent representation, we
build a memory bank to store momentum token
representations from the quantized network. When
computing the contrastive distillation loss, we load
the representations of negative samples from the
memory bank with cheap indexing operations.

Specifically, we use superscripts s and t to
denote the quantized student network and full-
precision teacher network, respectively. De-
note the length-n input sequence of tokens as
(t1, t2, · · · , tn). For the i-th token ti, suppose its
hidden states of the last Transformer layer from the
quantized and full-precision network are linearly
projected to (hsi ,h

t
i) ∈ Rd, and qsi is the smoothed

representation of hsi in the memory bank. Denote

Si as the indices of the sampled negatives for token
i, the token-level contrastive distillation loss for the
length-n sequence can be formulated as

Lcont=−
n∑
i=1

log
exp(s(qsti ,h

t
ti)/τ)∑

j∈Si exp(s(q
s
ti
,httj)/τ)

, (2)

where s(x,y) = x>y
‖x‖‖y‖ computes the cosine simi-

larity, and τ is a fixed temperature parameter.
Then we update the representation of token ti

in the memory bank with the moving-average of
token representations from the quantized network:

qsti ← mqsti + (1−m)hsti , (3)

where m ∈ [0, 1) it the momentum coefficient that
controls the smoothness of the token represenation.

Besides, we use an additional distillation loss
Ldist over the logits. For the i-th token ti, sup-
pose the logits of the quantized and full-precision
network are zsti , z

t
ti ∈ R|V |, where |V | is the vocab-

ulary size. Ldist is computed with the soft cross-
entropy loss:

Ldist = −
n∑
i=1

ztti log(z
s
ti). (4)

Thus the total training loss is

L = λLcont + Ldist, (5)

where λ is a trade-off factor set as 0.1 by default.
Intuitively, for each token in the quantized net-

work, Ldist only encourages it to mimic its corre-
sponding token of the teacher network, while Lcont
not only pulls it close to its positive, but also pushes
it away from its negatives. In this way, Lcont helps
the student to capture more information from the

4824

(a) Full-precision. (b) PACT. (c) LSQ. (d) LAQ. (e) Ours.

Figure 2: T-SNE visualization of the most frequent 500 word embeddings, of the full-precision and different 2-bit
quantized models trained on PTB dataset. Embeddings of different methods show different degrees of homogeneity.

Figure 3: Matrices representing the cosine similarities between representations of all pairs of tokens in a sentence,
between the full-precision model and 2-bit quantized models trained on PTB dataset. Token representations at the
last decoder layer of GPT-2 are used. More visualizations are available in Appendix C.3.

a token-level contrastive learning to alleviate this
problem. Compared with PACT, LSQ and LAQ,
our method not only aligns the token represen-
tations between the quantized and full-precision
networks (i.e., diagonal boxes), but also captures
the dependencies among different tokens (non-
diagonal boxes). More visualizations are available
in Appendix C.3. The non-distinguishable word
embeddings and poor ability to capture contextual-
ized dependencies also make methods like PACT
and LSQ more likely to generate incorrect tokens,
e.g. illogical and repeated text (Section 4.4).

(a) wo at Layer 4. (b) wg at Layer 4.

Figure 4: Distributions of output projection matrix wo

in the multi-head attention module and the second linear
layer wg in the feed-forward network of the 4-th layer
from the 12-layer full-precision GPT-2. Other modules
in other layers exhibit similar patterns. Vertical lines
indicate the clipping factors learned by PACT and our
method. Black curves show the estimated distribution
by kernel density estimation.

Varied Distribution of Weights. Besides the
learned word embeddings, we also investigate the

distribution of the weights in the full-precision
model. Figure 4 shows that the weight distribu-
tions of a 12-layer full-precision GPT-2 are highly
skewed with outliers. This causes difficulty in es-
timating the clipping factor α of the quantizer by
heuristic methods, or even by PACT which learns
the α through gradient descent. Specifically, in
PACT, the approximated gradient of α only relies
on the weights whose absolute values are larger
than α. This solution ignores the effect of weights
within [−α, α] and depends heavily on the initial-
ization of α. Figure 4 shows that an improper ini-
tialization together with the inaccurate gradient
estimation of the clipping factor often make the
learned α of PACT too large, and can not provide
fine resolution to the majority of weights within
the clipping range. The quantization error accumu-
lated over time makes this problem more severe. In
this work, we re-parameterize the clipping factor to
make the quantizer adaptive to each module in the
Transformer layers, and consider both weights out-
side and inside the clipping range when estimating
the gradient of the clipping factor.

As will be discussed in Section 3.2, we propose
a module-wise dynamic scaling to reduce the clip-
ping factor’s sensitivity to initialization, and an
improved gradient estimation that also considers
the weights within [−α, α]. Figure 4 shows that the
clipping factor learned by our method gives finer
resolutions to the majority of the weights.

4823

Method
#Bits

(W-E-A)
Size

(MB) (↓)
WikiText2

PPL (↓)
PTB

PPL (↓)
WikiText103

PPL (↓)
Persona-Chat
Acc(%) (↑)

- full-prec. 474.9 14.48 14.72 14.19 77.01
PACT 8-8-8 121.4 17.49 16.11 16.76 74.73
LSQ 8-8-8 121.4 16.75 15.43 15.24 75.28
LAQ 8-8-8 121.4 16.91 15.87 15.88 76.02

QuantGPT 8-8-8 121.4 15.31 14.90 14.58 76.12
PACT 4-4-8 62.4 19.23 20.17 20.15 25.13
LSQ 4-4-8 62.4 78.99 79.76 75.12 45.10
LAQ 4-4-8 62.4 17.12 16.55 16.91 71.71

QuantGPT 4-4-8 62.4 15.55 14.95 15.31 76.57
PACT 2-2-8 33.0 173.02 189.13 171.03 5.52
LSQ 2-2-8 33.0 847.54 544.98 1470.86 5.54
LAQ 2-2-8 33.0 19.15 18.25 18.97 71.36

QuantGPT 2-2-8 33.0 17.30 16.12 16.98 74.78

Table 1: Results of language modeling on the test set of WikiText2, PTB and WikiText103 datasets, and next
utterance prediction on the validation set of Persona-Chat dataset, with quantized GPT-2. “#Bits (W-E-A)” represents
the bit-width for weights of Transformer layers, word embedding, and activations.

For language modeling, we experiment on Wiki-
Text2 (Merity et al., 2016), Penn Treebank (PTB)
(Mikolov and Zweig, 2012) and WikiText103 (Mer-
ity et al., 2016). We use perplexity (PPL) to evalu-
ate the performance for language modeling.

Comparison with the Full-precision Model.
From Table 1, the performance of the proposed
method with 8-bit weight is comparable to the full-
precision counterpart on PTB and WikiText103,
while drops slightly on WikiText2. A slightly more
severe performance drop is observed as the bit-
width decreases from 8 to 4, with a drop of around 1
PPL point on WikiText2 and WikiText103, and less
than 0.1 PPL point on PTB. When the bit-width of
weight further goes down to 2, our method has an
average of 2 PPL points drop, but achieves 14.4×
model size reduction.

Comparison with Other Quantization Methods.
From Table 1, our method outperforms PACT, LSQ
and LAQ for all bit-widths and tasks. As the bit-
width decreases from 8 to 4, the PPL of LSQ
greatly increases, with the average PPL of LSQ
increasing by over 5 times. As the bit-width fur-
ther decreases to 2, both LSQ and PACT fail on all
datasets, despite their good performance on under-
standing tasks on BERT (Bai et al., 2021). We con-
jecture it is because though both PACT and LSQ
have learnable parameters, the accumulated quanti-
zation error of generative PLMs makes the updates
of these parameters by gradient descent less sta-
ble. On the other hand, the proposed module-wise
dynamic scaling alleviates the problem.

Comparison with Other Compression Methods.
In Table 2, we compare our quantization method

Method
Size

(MB)(↓)
WikiText2

PPL(↓)
PTB

PPL(↓)
WikiText103

PPL(↓)
full-prec. 474.9 (1.0x) 14.4 14.6 13.9
KnGPT2 332.0 (1.4x) - - 20.5

DistilGPT2 329.6 (1.4x) - - 21.1
LightPAFF 268.0 (1.8x) 18.8 22.8 16.4
Ours(8-8-8) 121.4 (3.9x) 15.3 14.9 14.6
Ours(4-4-8) 62.4 (7.6x) 15.6 15.0 15.3
Ours(2-2-8) 33.0 (14.4x) 17.3 16.1 17.0

Table 2: Comparison between our proposed quatization
method and other compression methods on GPT-2.

against recent GPT-2 compression methods, includ-
ing tensor decomposition method KnGPT2 (Edalati
et al., 2021), as well as distillation methods Distil-
GPT2 and LightPAFF (Song et al., 2020). From
the comparison, our method outperforms the others
in terms of model size and performance, even when
weights are compressed to only 2 bits.

4.3 Next Utterance Prediction

The task of next utterance prediction predicts the
next utterance given the dialogue context. It tests
the language understanding ability of generative
models. For this task, we use a large-scale dialogue
dataset, Persona-Chat (Zhang et al., 2018).

From Table 1, all quantization methods incur
a clear performance drop compared to the full-
precision baseline, even in the 8-bit setting. As
the quantization becomes more aggressive, i.e., the
bit-width gets smaller, the performance of PACT
and LAQ decrease more significantly than ours. In
particular, LSQ diverges for 2-bit weight and its ac-
curacy is only 5%, which is no better than a random
guess as there are 20 classes.

4826

4.4 Abstractive Summarization

Abstractive summarization aims at generating a
terse summary that captures the main ideas of the
source article. We experiment on XSum (Narayan
et al., 2018), whose ground-truth summarizations
are highly abstractive and are challenging for many
extractive strategies. ROUGE 1, 2, L are used to
evaluate the performance of this task.

Method
#Bits

(W-E-A)
Size

(MB)(↓) XSum

Metric R1 (↑) R2 (↑) RL (↑)
- full-prec. 532.0 40.75 18.10 33.05

PACT 8-8-8 138.1 39.16 16.60 31.60
LSQ 8-8-8 138.1 39.09 16.72 31.56
LAQ 8-8-8 138.1 39.10 16.74 31.65

QuantBART 8-8-8 138.1 40.25 17.78 32.70
PACT 4-4-8 72.4 32.68 11.52 26.03
LSQ 4-4-8 72.4 38.94 16.48 31.46
LAQ 4-4-8 72.4 39.03 16.68 31.63

QuantBART 4-4-8 72.4 40.24 17.71 32.69
PACT 2-2-8 39.6 7.76 1.30 6.96
LSQ 2-2-8 39.6 37.09 14.88 29.76
LAQ 2-2-8 39.6 37.48 15.27 30.13

QuantBART 2-2-8 39.6 39.15 16.72 31.72

Table 3: Results of abstractive summarization on the
test set of the XSum dataset, with quantized BART.

Table 3 shows the results of the abstractive sum-
marization. As can be seen, our method constantly
outperforms other methods again with a clear mar-
gin. Example generated summarizations of differ-
ent methods in Appendix C.2 show that the sum-
maries generated by QuantBART are logical and
terse, while those from PACT have repeated texts.

5 Discussion

5.1 Ablation on Contrastive Learning

5.1.1 Choices of Negative Sampling
As shown in Figure 6, we ablate on how to choose
negative samples in contrastive learning. Specif-
ically, we compare our method with variants of
token-level contrastive learning, which select neg-
ative samples of each token from (a) representa-
tions of other tokens in both the full-precision and
quantized networks (fp+quan.); (b) representations
of other tokens in the quantized network (quan.
only); and (c) the whole vocabulary randomly for
each training iteration (global). Besides, we com-
pare with (d) sequence-level contrastive learning
by pulling together representations of the same se-
quence, and pushing away representations of differ-

(a) fp+quan. (b) quan. only.

(c) global. (d) in-batch.

Figure 6: Four variants of negative sampling.

-
Sampling
method

WikiText2 PTB WikiText103

- QuantGPT 17.30 16.12 16.98

Tok-level
fp+quan. 17.38 16.51 17.13

quan. only 17.35 16.54 17.15
global 17.71 16.63 17.55

Seq-level
in-batch (bz=32) 17.62 19.23 18.97
in-batch (bz=16) 17.48 17.11 18.16

Table 4: Ablation study on negative sampling for 2-bit
weight, “bz” denotes for the batch size. “Tok” and “Seq”
are abbreviation for token and sequence, respectively.

ent ones from the teacher network (in-batch). Rep-
resentation of a sequence is defined as the mean of
representations of all tokens in the sequence.

From Table 4, “fp+quan.” and “quan. only”
performs worse than QuantGPT, which uses full-
precision representations of other tokens as nega-
tive samples. This indicates that noisy representa-
tions of tokens from the not-fully-trained quantized
network may not be sufficient. “global” performs
even worse, which we conjecture is because, for
one token, negative tokens chosen from the same
sequence are contextually related to it and more
informative than random tokens. “in-batch” per-
forms worse than all token-level variants, which
may be because generative tasks make predictions
in a token-wise manner and rely heavily in finer-
grained token-wise representations. Interestingly,
contrary to in-batch negative sampling in computer
vision (Chen et al., 2020), we find that reducing the
number of negative samples by reducing the batch
size from 32 to 16 slightly improves performance.

5.1.2 Number of Negative Samples
In Figure 7, we plot the PPL of 2-bit QuantGPT on
the PTB dataset, with varying number of negative
samples. We plot the mean results with standard

4827

Published in ACL2022: http://arxiv.org/abs/2203.1070548 total: 61

http://arxiv.org/abs/2203.10705

ACL2022 Outstanding Paper Award: Compression of ...

𝒕𝒕𝟏𝟏 𝒕𝒕𝟐𝟐 𝒕𝒕𝒏𝒏

“She said …… good”
tokenize

Input sequence

…… Pull together
Push awayToken memory bank 𝑽𝑽𝒃𝒃

index update

Quantized Student Network

Embedding
Layer

Full-precision Teacher Network

…

Embedding
Layer

Transformer
Layer 1

Transformer
Layer L

…

Embedding
Layer

Transformer
Layer 1

Transformer
Layer L

…

Token-level Contrastive Distillation

𝒉𝒉𝒕𝒕𝟏𝟏
𝒕𝒕 𝒉𝒉𝒕𝒕𝟐𝟐

𝒕𝒕

𝒒𝒒𝒕𝒕𝟏𝟏
𝒔𝒔 𝒒𝒒𝒕𝒕𝟐𝟐

𝒔𝒔 𝒒𝒒𝒕𝒕𝒏𝒏
𝒔𝒔…

𝒉𝒉𝒕𝒕𝒏𝒏
𝒕𝒕…

ℓ𝒄𝒄𝒄𝒄𝒏𝒏𝒔𝒔

ℓ𝒅𝒅𝒅𝒅𝒔𝒔𝒕𝒕

Logit Distillation

𝒛𝒛𝒕𝒕𝟏𝟏
𝒔𝒔 𝒛𝒛𝒕𝒕𝟐𝟐

𝒔𝒔 𝒛𝒛𝒕𝒕𝒏𝒏
𝒔𝒔

𝒛𝒛𝒕𝒕𝟏𝟏
𝒕𝒕 𝒛𝒛𝒕𝒕𝟐𝟐

𝒕𝒕 𝒛𝒛𝒕𝒕𝒏𝒏
𝒕𝒕…

Embedding
Layer

Figure 5: The training workflow of the proposed method. For each token in the quantized network, we compute
both (i) the token-level contrastive distillation loss where the positive tokens and negative tokens are selected from
the full-precision teacher network; and (ii) the distillation loss on the logits. The embedding layer and all weights in
the Transformer layers are quantized with the proposed module-dependent dynamic scaling.

3 Proposed Method

Based on the observations in Section 2.2, we pro-
pose a quantization method which utilizes token-
level contrastive distillation to make the word em-
bedding distinguishable (Section 3.1) and a module-
wise dynamic scaling adjustment to learn better
clipping factors (Section 3.2).

3.1 Token-level Contrastive Distillation

The proposed token-level contrastive distillation
contrast among tokens instead of sequences se-
quence, to learn distinguishable representations
for each token. Inspired by Baevski et al. (2020),
which uses in-utterance representation at different
positions of the same utterance as negatives for
speech feature learning, for each token of the quan-
tized network, we use the representation of the
same token from the full-precision teacher network
as its positive, while representations of other to-
kens in the same sequence as negatives (Figure 5).
Inspired by He et al. (2020) which uses a momen-
tum encoder for more consistent representation, we
build a memory bank to store momentum token
representations from the quantized network. When
computing the contrastive distillation loss, we load
the representations of negative samples from the
memory bank with cheap indexing operations.

Specifically, we use superscripts s and t to
denote the quantized student network and full-
precision teacher network, respectively. De-
note the length-n input sequence of tokens as
(t1, t2, · · · , tn). For the i-th token ti, suppose its
hidden states of the last Transformer layer from the
quantized and full-precision network are linearly
projected to (hsi ,h

t
i) ∈ Rd, and qsi is the smoothed

representation of hsi in the memory bank. Denote

Si as the indices of the sampled negatives for token
i, the token-level contrastive distillation loss for the
length-n sequence can be formulated as

Lcont=−
n∑
i=1

log
exp(s(qsti ,h

t
ti)/τ)∑

j∈Si exp(s(q
s
ti
,httj)/τ)

, (2)

where s(x,y) = x>y
‖x‖‖y‖ computes the cosine simi-

larity, and τ is a fixed temperature parameter.
Then we update the representation of token ti

in the memory bank with the moving-average of
token representations from the quantized network:

qsti ← mqsti + (1−m)hsti , (3)

where m ∈ [0, 1) it the momentum coefficient that
controls the smoothness of the token represenation.

Besides, we use an additional distillation loss
Ldist over the logits. For the i-th token ti, sup-
pose the logits of the quantized and full-precision
network are zsti , z

t
ti ∈ R|V |, where |V | is the vocab-

ulary size. Ldist is computed with the soft cross-
entropy loss:

Ldist = −
n∑
i=1

ztti log(z
s
ti). (4)

Thus the total training loss is

L = λLcont + Ldist, (5)

where λ is a trade-off factor set as 0.1 by default.
Intuitively, for each token in the quantized net-

work, Ldist only encourages it to mimic its corre-
sponding token of the teacher network, while Lcont
not only pulls it close to its positive, but also pushes
it away from its negatives. In this way, Lcont helps
the student to capture more information from the

4824

https://aclanthology.org/2022.acl-long.331/
49 total: 61

https://aclanthology.org/2022.acl-long.331/

bert2BERT: Towards Reusable Pretrained Language Models

train the initialized T , so that T can have a faster
convergence rate in pre-training.

4.2 Overview
Targeting the above problems, bert2BERT first ini-
tializes the target model T with the parameters of
the existing model S by the width-wise expansion
(Ds → Dt) and depth-wise expansion (Ls → Lt).
Through this expansion, the knowledge contained
in the parameters of the source model is directly
transferred to the target model. Then we further
pre-train the initialized target model with a two-
stage pre-training method. The overall workflow is
illustrated in Section 4.5.

Essentially, the width-wise expansion can be de-
composed into expansions of parameter matrices
(or vectors3). As illustrated in Figure 3, the ma-
trix expansion enlarges W ∈ R

dwin∗d
w
out of S to

U ∈ R
duin∗d

u
out of T by two kinds of operations:

in-dimension and out-dimension expansion.
In the following sections, we first introduce

two strategies of width-wise expansion: function-
preserving and advanced knowledge initialization.
Then, we introduce the depth-wise expansion and
detail the two-stage pre-training process.

4.3 Width-wise Expansion
For the paper clarity, we introduce two index map-
ping functions: gin and gout, where gin(i) means
the i-th in-dimension of U reuses the gin(i)-th in-
dimension parameters of W , gout(j) means the
j-th out-dimension of U reuses the gout(j)-th out-
dimension parameters of W . Both our two meth-
ods are defined with these two mapping functions.
W(i,j) means the parameter element, i and j re-
fer to the i-th in-dimension index and j-th out-
dimension index respectively. As shown in Fig-
ure 3, the i-th in-dimension parameters of W are
the parameters of the i-th input neuron of W or the
i-th column of W .

4.3.1 Function Preserving Initialization
Function preserving initialization (FPI) (Chen et al.,
2016) aims to make the initialized target model
have the same function as the source model, which
means that given the same input, the initialized tar-
get model has the same output as the source model.
In this paper, we extend FPI on a different archi-
tecture, Transformer-based pre-trained language
model. We give an example in Figure 3 to illustrate

3We omit the expansion of bias (vector) for simplicity. It
follows a similar process as the matrix expansion.

h1

𝑑out
𝑤

𝑑in
𝑤

❶ ❷
h2

x1 x2

y1 y2

𝑜

h1 h2

x1 x2

y1 y2

x1

h1 h2

x1 x2

y1 y2

x1

h2

𝑔in
{1: 1, 2: 2, 𝟑: 𝟏}

𝑔out
{1: 1, 2: 2, 𝟑: 𝟐}𝑝

𝑞 𝑟

𝑜
𝑞𝑝

𝑟

𝑎
𝑏 𝑐

𝑑

𝑜
2

𝑞
2

𝑞
2

𝑜
2

𝑞
2

𝑟
𝑞
2

𝑜
2
𝑞
2

𝑟

𝑝
𝑜
2
𝑞
2

𝑞
2

𝑟 𝑞
2

𝑜
2

𝑝 𝑜
2

𝑞
2 𝑟

𝑞
2

𝑑in
𝑢

𝑑in
𝑢

𝑑out
𝑢

𝑏
2

𝑏
2

𝑑
2

𝑑
2 ❸

COPY & RE-SCALE

COPY

𝑾
𝑼

𝑼
~

Change. 20211112

𝑞
2 𝑟

𝑞
2

Figure 3: Overview of the function preserving initializa-
tion (FPI). Given the same input {x1, x2}, FPI ensures
the initialized target model has the same output {y1, y2}
with the source model. The first and the second steps
are expanding the in-dimension and out-dimension of
the parameter matrix according to mapping functions
gin and gout respectively. After we expand the matrix
W into U , we use the in-dimension expansion on the
upper parameter matrix again to ensure the output {y1,
y2} same as the original one. From the view of neurons,
FPI copies the corresponding input and output neurons
to expand the neural network.

FPI. Formally, the mapping functions are defined
as follows:

gin(i) =

{
i i ∈ [1, dwin]

f({1, 2, ..., dwin}) i ∈ (dwin, d
u
in],

(5)

gout(j) =

{
j j ∈ [1, dwout]

f({1, 2, ..., dwout}) j ∈ (dwout, d
u
out],

(6)
where f(·) is uniform sampling. We denote the
weight expansion as U = EXPN(W ; gin, gout),
which includes in-dimension expansion (Eq. 7) and
out-dimension expansion (Eq. 8):

Cgin(i) =

duin∑
i′=1

I(gin(i
′) = gin(i))

Ũ(i,∗) =
1

Cgin(i)
W(gin(i),∗),

(7)

U(∗,j) = Ũ(∗,gout(j)), (8)

where I(·) is an indicator function, and Cgin(i) is
the count of gin(i) in the values of gin(·), which is
used to re-scale the original parameters to keep the
function preserving property.

Expansion for All Modules. We apply FPI
for all modules of BERT via matrix expansion
EXPN(·). Specifically, for the embedding matrix
WE , we only conduct the out-dimension expan-
sion:

UE
(∗,j) = WE

(∗,geout(j))
. (9)

MHA module can be decomposed into multiple
parallel self-attention heads and we conduct the
head-wise expansion for this module, which means

2137

𝑜 𝑝

𝑞 𝑟

𝑎 𝑏

𝑐 𝑑

𝑔in
𝑙

{1: 1, 2: 2, 𝟑: 𝟏}

𝑜
2
𝑞
2

𝑟

𝑝
𝑜
2
𝑞
2

𝑏
2
𝑑
2

𝑐

𝑎 𝑏
2
𝑑
2

𝑔in
𝑙+1

{1: 1, 2: 2, 𝟑: 𝟐}

𝑜
2
𝑞
2

𝑟

𝑝
𝑜
2
𝑞
2

𝑔out
𝑙

{1: 1, 2: 2, 𝟑: 𝟐}

𝑑
2

𝑐 𝑑
2

❶ ❷

Cheng 20211113

COPY

𝑑in
𝑤

𝑑out
𝑤

𝑑in
𝑢 𝑑in

𝑢

𝑑out
𝑢

𝑾𝑙+1

𝑾𝑙 ෩𝑼𝑙

෩𝑼𝑙+1

𝑼𝑙

Figure 4: Overview of AKI. It first performs the in-
dimension expansion on both the matrixes of current
and upper layers. Then it uses the widened matrix of
the current layer as the top part of the new matrix and
samples the row of the widened matrix of the upper
layer as the bottom part of the new matrix.

2016). For example, FPI makes the attention pat-
terns in the same layer repeated, which is redundant
and called symmetry; (2) upper-layer information
can be used as similar but high-level knowledge to
guide the model to converge faster. We display the
attention patterns of the target model initialized by
AKI in Appendix E and find that the target model
can maintain the attention patterns of both current
and upper layers very well.

Expansion for All Modules. For embedding ma-
trix, we only do the out-dimension expansion as
Eq. 9 in the FPI. Both the modules of MHA and
FFN do the matrix expansion by following the de-
fined operation in Eq. 15 and Eq. 16. The con-
straints of mapping functions follow the setting of
FPI.

Empirically, we find that the AKI method out-
performs FPI, while the performance is worse if we
build a new matrix based on the matrix of the lower
layer (or low-level knowledge). How to construct
the optimal initialization for the target model with
the parameters of different layers remains an open
question and we leave it as future work.

For more details, we give a clear illustration of
the FPI and AKI process in Appendix F.

4.4 Depth-wise Expansion
After the width-wise expansion, we obtain a
widened model with the same width as the target
model. To bridge the depth gap, we perform depth-
wise expansion to increase model depth to the depth
of the target model. We illustrate this process in
Algorithm 1 and the main idea is to iteratively stack
the widened model until its depth is equal to the
target model (Gong et al., 2019).

4.5 Two-stage Pre-training
To further improve the pre-training efficiency of ini-
tialized target model, we propose a two-stage train-
ing method: (1) train sub-models with different

Algorithm 1 Target Model Initialization

Input: the target model T (Lt, Dt) and the source
model S(Ls, Ds).

1: T1(Ls, Dt)← do AKI or FPI with S(Ls, Ds)
2: k ← ⌊Lt/Ls⌋
3: for t = 2→ k do
4: Tt(Ls · t,Dt)← stack T1 on top of Tt−1

5: end for
6: T ← stack top Lt − Ls · k layers of T1.

Output: the initialized model T (Lt, Dt)

Algorithm 2 Two-stage Pre-training

Input: the initialized model T , large-scale unsu-
pervised dataset D, the epoch number of sub-
model training Eb and the epoch number of
whole training process E, the layer number lb.

1: Construct sub-models and these models have
the layer numbers of {lb, 2 · lb, . . . , Lt}.

2: for e = 1→ Eb do
3: for batch in D do
4: T ′ ← sample one sub-model.
5: Perform forward and backward of T ′.
6: Update only top lb layers of T ′.
7: end for
8: end for
9: for e = Eb → E do

10: for batch in D do
11: Perform forward and backward of T .
12: Update whole model T .
13: end for
14: end for
Output: the pre-trained model T

layers in a random manner to make the complete
model converge at a low cost. These sub-models
are built with bottom Transformer layers of the ini-
tialized target model and share one classification
layer. At each optimization step, we randomly sam-
ple one sub-model and only update its top Trans-
former layers and the shared classification layer.
(2) After the sub-structure training, we further per-
form the traditional full-model training. The details
of our method are displayed in Algorithm 2.

5 Experiment

5.1 Experimental Setup
Pre-training Details. We use the English
Wikipedia and Toronto Book Corpus (Zhu et al.,
2015) as the pre-training data. The settings of pre-
training are: peak learning rate of 1e-4, warmup

2139

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2134 - 2148

May 22-27, 2022 c©2022 Association for Computational Linguistics

bert2BERT: Towards Reusable Pretrained Language Models
Cheng Chen1†, Yichun Yin2, Lifeng Shang2, Xin Jiang2, Yujia Qin1,
Fengyu Wang1, Zhi Wang3,4‡, Xiao Chen2, Zhiyuan Liu1, Qun Liu2

1Department of Computer Science and Technology, Tsinghua University
2Huawei Noah’s Ark Lab, 3Tsinghua Shenzhen International Graduate School

4Peng Cheng Laboratory
{c-chen19,qyj20,wangfy20}@mails.tsinghua.edu.cn

{yinyichun,shang.lifeng,jiang.xin,chen.xiao2,qun.liu}@huawei.com
wangzhi@sz.tsinghua.edu.cn,liuzy@tsinghua.edu.cn

Abstract

In recent years, researchers tend to pre-train
ever-larger language models to explore the up-
per limit of deep models. However, large lan-
guage model pre-training costs intensive com-
putational resources, and most of the models
are trained from scratch without reusing the
existing pre-trained models, which is wasteful.
In this paper, we propose bert2BERT1, which
can effectively transfer the knowledge of an
existing smaller pre-trained model to a large
model through parameter initialization and sig-
nificantly improve the pre-training efficiency of
the large model. Specifically, we extend the pre-
vious function-preserving (Chen et al., 2016)
method proposed in computer vision on the
Transformer-based language model, and fur-
ther improve it by proposing a novel method,
advanced knowledge for the large model’s ini-
tialization. In addition, a two-stage learning
method is proposed to further accelerate the
pre-training. We conduct extensive experi-
ments on representative PLMs (e.g., BERT and
GPT) and demonstrate that (1) our method can
save a significant amount of training cost com-
pared with baselines including learning from
scratch, StackBERT (Gong et al., 2019) and
MSLT (Yang et al., 2020); (2) our method is
generic and applicable to different types of pre-
trained models. In particular, bert2BERT saves
about 45% and 47% computational cost of pre-
training BERTBASE and GPTBASE by reusing
the models of almost their half sizes.

1 Introduction

Pre-trained language models (PLMs), such as
BERT (Devlin et al., 2019), GPT (Radford et al.,
2018, 2019; Brown et al., 2020), ELECTRA (Clark
et al., 2020), XLNet (Yang et al., 2019) and
RoBERTa (Liu et al., 2019), have achieved great

† This work is done when Cheng Chen is an intern at
Huawei Noah’s Ark Lab.

‡ Corresponding author.
1Our code is available at https://github.com/

huawei-noah/Pretrained-Language-Model.

0 1 2 3 4 5 6 7 8
FLOPs (1e19)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

M
LM

 L
os

s

4 5 6 7
1.40

1.42

1.44

1.46

1.48

1.437
100%75.7%54.8%

BERTBASE

StackBERT
bert2BERT

Figure 1: Loss curves of bert2BERT and baselines.
StackBERT (Gong et al., 2019) is based on the pro-
gressive training setting. More details are shown in
Table 2.

success in natural language processing (NLP).
However, the pre-training process of large PLMs
can be extremely computationally expensive and
produces huge carbon footprints. For example,
GPT-3 uses 3.1E+6 GPU hours for training, at an
estimated cost of $4.6 million2, consuming a lot
of computing resources. Therefore, how to reduce
the training cost of PLM is of great importance to
Green AI (Schwartz et al., 2020).

Recently, there is a trend of training extremely
large models to explore the upper limits of PLMs.
For example, large pre-trained models, includ-
ing GPT-3 (Brown et al., 2020) (175B), PanGu-
α (Zeng et al., 2021) (200B) and Switch Transform-
ers (Fedus et al., 2021) (1571B), have been proved
promising in language understanding and gener-
ation. However, these models are all pre-trained
from scratch independently without utilizing the
knowledge of smaller ones that have already been
trained. On the other hand, our empirical studies
show that the pre-trained models of different scales
could share similar knowledge, for example in Fig-
ure 2, the attention patterns of the two PLMs with
different sizes are similar.

To save the training cost of large models, we
2https://lambdalabs.com/blog/

demystifying-gpt-3/

2134

Published in ACL2022: https://aclanthology.org/2022.acl-long.151

50 total: 61

https://aclanthology.org/2022.acl-long.151

LMTurk: Using LMaaS as Crowdsourcing Workers

Findings of the Association for Computational Linguistics: NAACL 2022, pages 675 - 692
July 10-15, 2022 ©2022 Association for Computational Linguistics

LMTurk: Few-Shot Learners as Crowdsourcing Workers in a
Language-Model-as-a-Service Framework

Mengjie Zhao† Fei Mi‡ Yasheng Wang‡ Minglei Li*

Xin Jiang‡ Qun Liu‡ Hinrich Schütze†

†CIS, LMU Munich ‡Huawei Noah’s Ark Lab *Huawei Technologies Co., Ltd.
mzhao@cis.lmu.de, {mifei2,wangyasheng,jiang.xin,qun.liu}@huawei.com

Abstract

Vast efforts have been devoted to creating high-
performance few-shot learners, i.e., large-scale
pretrained language models (PLMs) that per-
form well with little downstream task train-
ing data. Training PLMs has incurred signif-
icant cost, but utilizing the few-shot learners
is still challenging due to their enormous size.
This work focuses on a crucial question: How
to make effective use of these few-shot learn-
ers? We propose LMTurk, a novel approach
that treats few-shot learners as crowdsourcing
workers. The rationale is that crowdsourcing
workers are in fact few-shot learners: They
are shown a few illustrative examples to learn
about a task and then start annotating. LMTurk
employs few-shot learners built upon PLMs as
workers. We show that the resulting annota-
tions can be utilized to train models that solve
the task well and are small enough to be deploy-
able in practical scenarios. Active learning is
integrated into LMTurk to reduce the amount of
queries made to PLMs, minimizing the compu-
tational cost of running PLM inference passes.
Altogether, LMTurk is an important step to-
wards making effective use of current PLMs.1

1 Introduction

Equipped with prolific linguistic features (Liu et al.,
2019; Tenney et al., 2019; Belinkov and Glass,
2019; Rogers et al., 2020) and rich world knowl-
edge (Petroni et al., 2019; Poerner et al., 2020;
Kassner et al., 2021), large-scale pretrained lan-
guage models (PLMs) have been shown to be ver-
satile: They are now basic building blocks (Bom-
masani et al., 2021) of systems solving diverse NLP
tasks in many languages (Wang et al., 2018, 2019;
Hu et al., 2020; Xu et al., 2020; Khashabi et al.,
2021; Park et al., 2021; Adelani et al., 2021).

Recent work shows that PLMs are effective
few-shot learners (Brown et al., 2020; Schick and
Schütze, 2021b; Gao et al., 2021; Tam et al., 2021)

1Resources are available at: github.com/lmturk

S

U

A

D

Small model S predicts unlabelled data U.
Select data D from U with active learning.
LMTurkers A annotate and aggregate labels of D.
Training a new small model S.

Converting a PLM to LMTurker with few-shot gold data G of task T.

G

Figure 1: LMTurk overview; best viewed in color. We
few-shot adapt PLMs to task T (left) and then use them
as crowdsourcing workers in active learning. We show
that these PLM workers are effective in training a small
model S through a customized active learning loop
(right). LMTurk is a novel way to take advantage of
large-scale PLMs: It creates models small enough to be
deployed in resource-limited real-world settings.

through priming (Brown et al., 2020; Tsimpoukelli
et al., 2021) or prompting (Li and Liang, 2021; Liu
et al., 2021b; Lester et al., 2021; Zhao and Schütze,
2021). Developing few-shot learners is crucial be-
cause current NLP systems require much more data
than humans (Yin et al., 2020). Few-shot learners
tend to perform well; however, they still fall behind
systems trained with abundant data. Furthermore,
the enormous size of PLMs hinders their deploy-
ment in practice. For example, it is challenging
to fit the 11 billion T5-XXL (Raffel et al., 2020)
model on a single regular GPU.

Our goal in this paper is to devise methods that
make more effective use of current few-shot learn-
ers. This is crucial because an increasing number

675

(computed with c). We evaluate4 the effectiveness
of processing Dj before training Sj in §5.6.

3.4 Summary of LMTurk
LMTurk can be viewed as intermediate between
self training (Yarowsky, 1995; Abney, 2004; Lee
et al., 2013; Mi et al., 2021b) and AL. Unlike self
training, LMTurk employs external models provide
labels to S . Different from the artificial setup used
in many AL experiments, the provided labels do
not have oracle quality; so S must use the annota-
tions more carefully. We next conduct experiments
investigating the effectiveness of LMTurk.

4 Datasets and Setup

4.1 Dataset
We evaluate LMTurk on five datasets: Binary
(SST2) and fine-grained (five classes) sentiment
classification (SST5) with the Stanford Sentiment
TreeBank (Socher et al., 2013); news article topic
classification with the AG’s News Corpus (AG-
News; Zhang et al. (2015)); recognizing textual en-
tailment (RTE; Dagan et al. (2006)); assessing lin-
guistic acceptability (CoLA; Warstadt et al. (2019)).
Appendix §A reports dataset statistics. SST2/SST5
and AGNews are widely used in crowdsourcing
and AL (Laws et al., 2011; Ein-Dor et al., 2020;
Margatina et al., 2021; Zhang and Plank, 2021).
RTE and CoLA assess the models’ ability to un-
derstand textual entailment and linguistic phenom-
ena – as opposed to text categorization. We report
Matthew’s correlation coefficient for CoLA and
accuracy for the others (Wang et al., 2018).

Few-shot datasets. Recall LMTurk uses a small
human-annotated dataset G = {Gtrain;Gdev}. De-
noting n as the number of shots per class, we sam-
ple Gntrain and Gndev for each of n ∈ {8, 16, 32}.
For SST2, RTE, and CoLA, we use the train and
dev sets of GLUE (Wang et al., 2018); Gntrain and
Gndev are sampled from the train set; the dev set is
used as the test set. For SST5 and AGNews, we
use the official datasets; Gntrain (Gndev) is sampled
from the train (dev) set; we report performance on
the test set. We repeat the sampling process with
three random seeds.

4.2 Training setup
Brown et al. (2020) show that large model size is

4Motivated by Wang et al. (2017), we also investigate the
effectiveness of weighting training examples. However, we
do not observe noticeable improvements of task performance.
We list more details in Appendix §E.

Schick and Schütze (2021a,b) Gao et al. (2021) Ours

SST2 n/a 93.0±0.6 93.08±0.62
SST5 n/a 49.5±1.7 46.70±0.93
RTE 69.8 71.1±5.3 70.88±1.70

AGN. 86.3±0.0 n/a 87.71±0.07
CoLA n/a 21.8±15.9 19.71±1.89

Table 1: LMTurkers achieve comparable few-shot per-
formance with the literature. We refer to PET results
in Schick and Schütze (2021a,b) and results of Prompt-
based FT (auto) + demonstrations in Gao et al. (2021).

necessary for strong few-shot performance. We
use ALBERT-XXLarge-v2 (Lan et al., 2020) – of
size 223M parameters – as our large PLM, which is
adapted to be an LMTurkerA of T with G. With pa-
rameter reuse, ALBERT-XXLarge-v2 outperforms
larger models like the 334M BERT-large (Devlin
et al., 2019). In contrast, S must be small to be de-
ployable in practical scenarios. We use TinyBERT-
General-4L-312D (Jiao et al., 2020), which has
14.5M parameters.

We train – with prompting – the large PLM with
G for 100 batch steps using batch size 16, AdamW
(Loshchilov and Hutter, 2019) and learning rate
5e-4 with linear decay. We prompt the large PLM
five times to obtain five LMTurkers; Appendix §C
shows prompting details. At each iteration, we fine-
tune S for 20 epochs using batch size 32, Adam
(Kingma and Ba, 2015) and learning rate 5e-5.
Each experiment is run with three different ran-
dom seeds. We use PyTorch (Paszke et al., 2019)
and HuggingFace (Wolf et al., 2020).

5 Experiment

5.1 Few-shot performance (non-iterative)
We compare few-shot performance of LMTurkers
and the small model S when only G is used. LM-
Turker performance is comparable to prior work
(Schick and Schütze, 2021a,b; Gao et al., 2021) as
shown in Table 1.

Figure 2 compares performance of LMTurkers
and S. Appendix §B Table 3 reports numeric val-
ues. LMTurkers perform clearly better than S on
CoLA, SST5, AGNews, and SST2; e.g., for SST2,
for train/dev size 16, LMTurker accuracy is 93.08%
vs. 75.83% for S. LMTurkers’ superiority over S
on RTE is modest. As an inference task, RTE
is more challenging than classification (e.g., AG-
News). We hypothesize that current few-shot learn-
ers require more data than G32 to process difficult
tasks better than S . Scaling up to even larger PLMs
is also a promising direction (Brown et al., 2020;

679

Figure 2: Few-shot test set performance of LMTurkers
and S . We use the few-shot gold datasets G8 (top), G16
(middle), and G32 (bottom).

Lester et al., 2021).
Overall, LMTurkers outperform S with clear

margins, evidencing that their annotations can
serve as supervisions for training S. We next con-
duct iterative training to improve performance of
S on T with supervisions from LMTurkers.

5.2 Iterative training
We investigate the effectiveness of LMTurk by sim-
ulating scenarios analogous to active learning. Con-
cretely, we compare three schemes of annotating
the sampled data B at each annotation iteration j:

• Active learning (AL). We use B’s gold labels
to show how S performs with expert annota-
tions. Gold labels are ideal, but costly because
expert annotators need to be employed.

• Self training (ST). We use Sj−1, the model
trained in the previous iteration, to annotate
B (Yarowsky, 1995; Abney, 2004; Lee et al.,

Figure 3: Improving S with active learning (blue), self
training (orange), and LMTurk (green). Free markers
at step zero show LMTurker performances; colors dis-
tinguish random seeds. Three acquisition functions are:
Entropy (•), LeastConfident (�), random sampling
($). At iteration j, each experiment is repeated
three times; we show mean and standard deviation.
Appendix Figure 9 visualizes more results.

2013). ST trades supervision quality for an-
notation cost; no extra cost is introduced. Be-
cause there is no external supervision, ST is
expected to be a baseline.

• LMTurk. We query the LMTurkers to anno-
tate B. LMTurkers are machine learning mod-
els, so there is no human labor. Based on the
findings in Figure 2, LMTurker supervisions

680

Published in NAACL2022 Findings: https://aclanthology.org/2022.findings-naacl.511
51 total: 61

https://aclanthology.org/2022.findings-naacl.51

LLM Research in Huawei Noah’s Ark Lab

Multi-modal Language Models

Efficient Training and Deployment

Arabic Language Models

Information Retrieval

Question Answering

Machine Translation

Poem Generation

Code Generation

Math Word Problem Solving

Content

JABER and SABER: Junior and Senior Arabic BERt

Model Arabic-BERT AraBERT CAMeLBERT ARBERT MARBERT JABER SABER

#Params (w/o emb) 110M (85M) 135M (85M) 108M (85M) 163M (85M) 163M (85M) 135M (85M) 369M (307M)
Vocab Size 32k 64k 30k 100k 100k 64k 64k
Tokenizer WordPiece WordPiece WordPiece WordPiece WordPiece BBPE BBPE
Normalization 8 X X 8 8 X X
Data Filtering 8 8 8 8 8 X X
Textual Data Size 95GB 27GB 167GB 61GB 128GB 115GB 115GB
Duplication Factor 3 10 10 - - 3 3
Training epochs 27 27 2 42 36 15 5

Table 1: Configuration comparisons of various publicly available Arabic BERT models and ours (JABER and
SABER). AraBERT and MARBERT didn’t provide their data duplication factor.

ALUE. Furthermore, SABER improves the results
of JABER by 3.6% on average, and reports the new
state-of-the-art performances of 77.3% on ALUE.

The remainder of the report is organized as fol-
lows. We discuss topics related to our work in
Section 2. We describe the process for pre-training
JABER in Section 3. An evaluation of seven Arabic
BERT models on the ALUE benchmark, as well
as on a NER benchmark is described in Section 4,
thus before concluding and discussing future works
in Section 5.

2 Related Work

BERT (Devlin et al., 2019) was the leading work to
show that large PLMs can be effectively fine-tuned
for natural language understanding (NLU) tasks.
During the pre-training phase, BERT is trained
on both Masked Language Modelling (MLM)
and Next Sentence Prediction (NSP) unsupervised
tasks. MLM refers to predicting randomly masked
words in a sentence. In real implementation, train-
ing data is duplicated n times (duplication factor)
with different token masking. NSP is a binary clas-
sification task for predicting whether the second
sentence in a sequence pair is the true successor of
the first one. The author experimented on English
with a 12-layer BERT-base and the 24-layer BERT-
large Transformer (Vaswani et al., 2017) models
respectively.

RoBERTa (Liu et al., 2019) proposed mul-
tiple improvements on top of BERT. First, it
is trained on over 160GB of textual data com-
pared with 16GB for BERT. RoBERTa corpora
includes English Wikipedia and the BOOK COR-
PUS (Zhu et al., 2015) used by BERT, in ad-
dition to the CC-NEWS (Nagel, 2016), OPEN
WEB TEXT (Gokaslan and Cohen, 2019) and STO-
RIES (Trinh and Le, 2018) corpora. Compared

layers Arabic BERT model of the same size and architecture
as JABER.

to BERT, RoBERTa is pre-trained with a larger
batch size, more training steps on longer sequences
(512 vs. 128). It was shown that the NSP task
was not beneficial for end task performances, and
that MLM dynamic masking (mask change over
epochs) works better than static masking.

mBERT (Pires et al., 2019) and XLM-
RoBERTa (Conneau et al., 2020) are multilingual
PLMs that follow the pre-training procedure of
BERT and RoBERTa respectively. The former is
a BERT-base model that was pre-trained on con-
catenation of 104 Wikipedia languages. The latter
is pre-trained on 2.5 TB data of cleaned Common
Crawls (Wenzek et al., 2019) from 100 languages.
Also, XLM-RoBERTa uses an extra Translation
Language Modeling (TLM) pre-training objective,
which is similar to MLM but it expects concate-
nated parallel sequences as input.

Despite the all-in-one advantage of multilingual
models, monolingual PLMs have been found to
outperform multilingual ones in language-specific
evaluations on multiple languages (Wei et al.,
2019; Martin et al., 2019; Canete et al., 2020;
de Vries et al., 2019), where Arabic is not an ex-
ception (Safaya et al., 2020; Antoun et al., 2020;
Abdul-Mageed et al., 2021; Inoue et al., 2021).

Table 1 shows the configuration used by popular
publicly available Arabic BERT models, as well as
those of JABER (this work). Arabic-BERT (Safaya
et al., 2020) is a 12-layer BERT model trained
on 95GB of common crawl, news, and Wikipedia
Arabic data. AraBERT (Antoun et al., 2020) used
a larger vocabulary size of 64k WordPieces and
performs text normalization. On one hand, they
used 3.3 less textual data, while on the other hand,
they increased the duplication factor by a factor of
3.3.

Abdul-Mageed et al. (2021) proposed two 12-
layers Arabic pre-trained BERT models named AR-
BERT and MARBERT. The first model is meant

Arabic-BERT AraBERT CAMeLBERT ARBERT MARBERT JABER SABER

MQ2Q* 73.3±0.6 73.5±0.5 68.9±1.1 74.7±0.1 69.1±0.9 75.1±0.3 77.7±0.4
MDD 61.9±0.2 61.1±0.3 62.9±0.1 62.5±0.2 63.2±0.3 65.7±0.3 67.7±0.1
SVREG 83.6±0.8 82.3±0.9 86.7±0.1 83.5±0.6 88.0±0.4 87.4±0.7 89.3±0.3
SEC 42.4±0.4 42.2±0.6 45.4±0.5 43.9±0.6 47.6±0.9 46.8±0.8 49.0±0.5
FID 83.9±0.6 85.2±0.2 84.9±0.6 85.3±0.3 84.7±0.4 84.8±0.3 86.1±0.3
OOLD 88.8±0.5 89.7±0.4 91.3±0.4 90.5±0.5 91.8±0.3 92.2±0.5 93.4±0.4
XNLI 66.0±0.6 67.2±0.4 55.7±1.2 70.8±0.5 63.3±0.7 72.4±0.7 75.9±0.3
OHSD 79.3±1.0 79.9±1.8 81.1±0.7 81.9±2.0 83.8±1.4 85.0±1.6 88.9±0.3

Avg. 72.4±0.6 72.6±0.6 72.1±0.6 74.1±0.6 73.9±0.7 76.2±0.7 78.5±0.3

Table 4: DEV performances and standard deviations over 5 runs on the ALUE benchmark. Bold entries describe the
best results among all models, while underlined entries show best results among BERT-base models. * indicates
that the results are on our own MQ2Q dev set.

nal score is the unweighted average over the eight
tasks. We refer the readers to (Seelawi et al., 2021)
for detailed descriptions of ALUE datasets.

As Table 3 shows, 5 (out of 8) ALUE tasks are
sourced from Tweets, and 6 tasks contains Arabic
dialect data. This makes ALUE a suitable tool
to identify useful models and keep track of the
progress in the Arabic NLU field. However, ALUE
training datasets and their sentence lengths are rel-
atively small compared to English GLUE (Wang
et al., 2018). In addition, three tasks (FID, MQ2Q,
XNLI) are not supported by a dev set, and the
test set labels are publicly provided for three tasks
(MDD, FID, XNLI).

We use a simple yet generic method to obtain a
dev set for the MQ2Q task8. First, we translated
the development set of QQP task9 from English to
Arabic using an online translation service. Then
we randomly selected 2k positive and negative sam-
ples (4k in total). In order to ensure a high-quality
corpus, we only select sentence pairs that don’t con-
tain English alphabet letters. This set is inclusively
used as a proxy to evaluate models and select the
best one for test submission.

Furthermore, we also consider ANERcorp (Be-
najiba and Rosso, 2007) for evaluation. It is a
well-established benchmark for Arabic Named En-
tity Recognition (NER) which includes 4 types
of named-entities. We run experiments on the
train/test split provided by (Obeid et al., 2020) and
report mention-level F1 scores using the official
CONLL-2003 (Tjong Kim Sang and De Meulder,

8Following ALUE paper, we treat FID and XNLI test set
as a dev set.

9https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question

2003) evaluation script10.

4.2 Finetuing Details

We run extensive experiments in order to fairly
compare JABER11 with Arabic-BERT, AraBERT,
CAMeLBERT, ARBERT and MARBERT on the
ALUE tasks. For all these models, we use AdamW
optimizer with learning rate with linear decay. We
search12 the learning rate from {7e-6, 2e-5, 5e-
5}, batch size from {8, 16, 32, 64, 128}, hid-
den dropout from {0.1, 0.2, 0.3, 0.4}, and fixed
the epoch number to 30. The aforementioned HP
search strategy is applied to all models, and the
best hyper-parameters are listed in Table 7 in Ap-
pendix B.

In order to validate the statistical significance of
our results, we run all experiments 5 times with dif-
ferent random seeds, and we report average scores
and standards deviations. For JABER and SABER
test submissions, we use the models performing the
best on the dev set for each task. Our fine-tuning
code is based on the PyTorch (Paszke et al., 2019)
version of the HuggingFace Transformers (Wolf
et al., 2020) library. We run all experiments on a
single NVIDIA Tesla V100 GPU.

4.3 Results

Table 4 shows the dev set performance of models
trained on ALUE tasks. For each model, we re-
port the average and standard deviation of 5 runs.
First, we notice that variance in performances of
multiple runs is roughly the same on average for
all BERT-base models. The variance is within an

10https://www.clips.uantwerpen.be/
conll2000/chunking/conlleval.txt

11as well as for fine-tuning SABER
12We used grid search with multiple runs

Preprint: https://arxiv.org/pdf/2112.04329v3.pdf ALUE Leaderboard https://www.alue.org/leaderboard

52 total: 61

https://arxiv.org/pdf/2112.04329v3.pdf
https://www.alue.org/leaderboard

LLM Research in Huawei Noah’s Ark Lab

Multi-modal Language Models

Efficient Training and Deployment

Arabic Language Models

Information Retrieval

Question Answering

Machine Translation

Poem Generation

Code Generation

Math Word Problem Solving

Content

SparTerm:
Learning Term-based Sparse Representation for Fast Text Retrieval

SparTerm: Learning Term-based Sparse Representation for Fast Text Retrieval Conference’17, July 2017, Washington, DC, USA

Huawei Confidential1

Input passage

Importance

Predictor

Gating

Controller

Importance
Distribution

Binary
Gating

Final Sparse Representation

…

ℎ1 ℎ2 ℎ𝑁𝐶

Tok 1[CLS] Tok 2 Tok N

…

Token-wise Importance Predictor

…

+
Token-wise
Importance
Distribution

Passage-wise Importance Distribution(dense)

PLM

Binarizer

BOW

Not-BOW

Dense Term
Gating

Binary Term
Gating

…

ℎ1 ℎ2 ℎ𝑁𝐶

Tok 1[CLS] Tok 2 Tok N

…

Term Gating Predictor

PLM

…

+

Expansion-enhanced Gating(sparse)

(a) SparTerm Model (b) Importance Predictor (c) Gating Controller

dim= vocab_size

Figure 2: Model Architecture of SparTerm. Our overall architecture contains an importance predictor and a gating controller.
The importance predictor generates a dense importance distribution with the dimension of vocabulary size, while the gating
controller outputs a sparse and binary gating vector to control term activation for the final representation. These twomodules
cooperatively ensure the sparsity and flexibility of the final representation.

this, we let | |G(𝑝) | | < 𝜆 and G(𝑝) ∈ {0, 1}𝑣 , where 𝜆 is the max-
imum number of non-zero elements for 𝑝 ′, and 𝑣 the vocabulary
size. These two modules cooperatively ensure the sparsity and flex-
ibility of the final representation 𝑝 ′. We discuss the detailed model
architecture and learning strategy for F and G in the following
sections.

3.2 The Importance Predictor
Given the input passage 𝑝 , the importance predictor outputs se-
mantic importance of all the terms in the vocabulary, which unify
term weighting and expansion into the framework. As shown in
Figure 2(b), prior to importance prediction, BERT-based encoder
is employed to help get the deep contextualized embedding ℎ𝑖 for
each term 𝑤𝑖 in the passage 𝑝 . Each ℎ𝑖 models the surrounding
context from a certain position 𝑖 , thus providing a different view
of which terms are semantically related to the topic of the current
passage. With a token-wise importance predictor, we obtain a dense
importance distribution 𝐼𝑖 of dimension 𝑣 for each ℎ𝑖 :

𝐼𝑖 = 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚(ℎ𝑖)𝐸T + 𝑏 (2)
where 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚 denotes a linear transformation with GELU acti-
vation and layer normalization, 𝐸 is the shared word embedding
matrix and 𝑏 the bias term. Note that the token-wise importance
prediction module is similar to the masked language prediction
layer in BERT, thus we can initialize this part of parameters directly
from pre-trained BERT. The final passage-wise importance distri-
bution can be fetched simply by the summation of all token-wise
importance distributions:

𝐼 =
𝐿∑︁
𝑖=0

𝑅𝑒𝑙𝑢 (𝐼𝑖) (3)

where 𝐿 is the sequence length of passage 𝑝 and Relu activation
function is leveraged to ensure the nonnegativity of importance
logits.

3.3 The Gating Controller
The gating controller generates a binary gating signal of which
terms to activate to represent the passage. First, the terms appear-
ing in the original passage, which we referred to as literal terms,
should be activated by the controller by default. Apart from the
literal terms, some other terms related to the passage topic are also
expected to be activated to tackle the “lexical mismatch” problem
of BOW representation. Accordingly, we propose two kinds of gat-
ing controller: literal-only gating and expansion-enhanced gating,
which can be applied in scenarios with different requirements for
lexical matching.

Literal-only Gating. If simply setting G(𝑝) = 𝐵𝑂𝑊 (𝑝), where
𝐵𝑜𝑊 (𝑝) denotes the binary BoW vector for passage 𝑝 , we get the
literal-only gating controller. In this setting, only those terms exist-
ing in the original passage are considered activated for the passage
representation. Without expansion for non-literal terms, the sparse
representation learning is reduced to a pure term re-weighting
scheme. Nevertheless, in the experiment part, we empirically show
that this gating controller can achieve competitive retrieval perfor-
mance by learning importance for literal terms.

Exapnsion-enhanced Gating. The expansion-enhanced gat-
ing controller activates terms that can hopefully bridge the “lexical
mismatch” gap. Similar to the importance prediction process for-
mulated by Equation (2) and Equation (3), we obtain a passage-wise
dense term gating distribution𝐺 of dimension 𝑣 with independent
network parameters, as shown in Figure 2(c). Note that although the

SparTerm: Learning Term-based Sparse Representation for Fast
Text Retrieval

Yang Bai∗†
Tsinghua University

Xiaoguang Li∗
Huawei Noah’s Ark Lab

Gang Wang
Huawei Noah’s Ark Lab

Chaoliang Zhang
Huawei Noah’s Ark Lab

Lifeng Shang
Huawei Noah’s Ark Lab

Jun Xu
Renmin University of China

Zhaowei Wang
Huawei Noah’s Ark Lab

Fangshan Wang
Huawei Technologies Co., Ltd

Qun Liu
Huawei Noah’s Ark Lab

ABSTRACT
Term-based sparse representations dominate the first-stage text re-
trieval in industrial applications, due to its advantage in efficiency,
interpretability, and exact term matching. In this paper, we study
the problem of transferring the deep knowledge of the pre-trained
language model (PLM) to Term-based Sparse representations, aim-
ing to improve the representation capacity of bag-of-words(BoW)
method for semantic-level matching, while still keeping its advan-
tages. Specifically, we propose a novel framework SparTerm to
directly learn sparse text representations in the full vocabulary
space. The proposed SparTerm comprises an importance predictor
to predict the importance for each term in the vocabulary, and a
gating controller to control the term activation. These two modules
cooperatively ensure the sparsity and flexibility of the final text
representation, which unifies the term-weighting and expansion in
the same framework. Evaluated on MSMARCO dataset, SparTerm
significantly outperforms traditional sparse methods and achieves
state of the art ranking performance among all the PLM-based
sparse models.

KEYWORDS
Fast Retrieval, Sparse Representation, BERT

1 INTRODUCTION
Text retrieval in response to a natural language query is a core
task for information retrieval (IR) systems. Most recent work has
adopted a two-stage pipeline to tackle this problem, where an initial
set of documents are firstly retrieved from the document collection
by a fast retriever, and then further re-ranked by more sophisticated
models.

For the first-stage retrieval, neural dense representations show
great potentials for semantic matching and outperform sparse meth-
ods in many NLP tasks, but this is not necessarily true in scenarios
that emphasize long document retrieval and exact matching[9].
Moreover, for extremely large (e.g. 10 billion) candidates collection,
the dense method has to struggle with the efficiency vs. accuracy
tradeoff. Classical term-based sparse representations, also known
∗Both authors contributed equally to this research.
†This work is done when Yang Bai is an intern at Huawei Noah’s Ark Lab.

Query Can hives be a sign of pregnancy?

Type Term frequency SparTerm

Literal

term

Weights

Term

expansion

symptoms:1.0, women:0.99,

rash:0.98, feel:0.99, causing:0.97,

body:0.96, affect:0.96, baby:0.94,

pregnant:0.93, sign:0.91, …

Figure 1: The comparison between BoW and SparTerm rep-
resentation. The depth of the color represents the term
weights, deeper is higher. Compared with BoW, SparTerm
is able to figure out the semantically important terms and
expand some terms not appearing in the passage but very se-
mantically relevant, even the terms in the target query such
as “sign”.

as bag-of-words (BoW), such as TF-IDF [15] and BM25 [14], can
efficiently perform literal matching, thus playing a core role in
industrial IR systems. However, traditional term-based methods are
generally considered to have insufficient representation capacity
and inadequate for semantic-level matching.

Some attempts have been made to make sparse methods beyond
lexical matching while still keeping their advantages. SRNM [17]
learns latent sparse representations for the query and document
based on dense neural models, in which the “latent” token plays the
role of the traditional term during inverted indexing. One challenge
about SNRM is that it loses the interpretability of the original terms,
which is critical to industrial systems.

Recently proposed pre-trained language models(PLM) such as
ELMO [12] and BERT [4] show superior performance in many NLP
tasks, thus providing new opportunities to transfer deep contextual-
ized knowledge from dense representations to sparse models. Focus-
ing on the relevant relationship between a passage/document and

ar
X

iv
:2

01
0.

00
76

8v
1

 [
cs

.I
R

]
 2

 O
ct

 2
02

0
Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

Model MRR@10
BM25+PassageRetrievalMax 23.6
HDCT+PassageRetrievalMax 26.1
BM25 24.5
HDCT(sum) 28.0
HDCT(decay) 28.7
SparTerm(literal-only)+PassageRetrievalMax 28.5
SparTerm(expansion-enhanced)+PassageRetrievalMax 29.0

Table 3: Performance of baselines and ourmodels on dev set
of MSMARCO document ranking dataset. All use the max
score of passages in the document as the document score at
the query time.

Model MRR@10 R@1000
Query-tf 25.7 94.2
Query-neural-symmetric 26.4 94.7
Query-neural-asymmetric 25.4 94.2

Table 4: Performances of ourmodelwith different query rep-
resentation strategies on our newDev Set ofMSMARCO pas-
sage retrieval.

the representations of passages for document ranking. The first one
represents the document as a sum of the passage representations
while the second one uses a decayed weighted sum. The PassageRe-
trievalMax does not represent the document but just calculates the
scores of passages in the document and choose the maximum score
as the score of the document for ranking. Table 3 shows the ranking
performance of baselines and our models. Here we only report the
results of PassageRetrievalMax of our models.

Strictly speaking, it is incomparable between HDCT and our
models since we fine-tune SparTerm on MSMARCO pasage ranking
dataset while HDCT was trained using document titles on MARCO.
Even though, SparTerm(expansion-enhanced) still achieves a better
performance on document ranking compared with HDCT, demon-
strating that the sparse representation produced by SparTerm can
also facilitate long document retrieval.

5.3 Comparison of Different Query
Representation Methods

We conduct experiments to evaluate the performance of SparTerm
with different query representation methods:

• Query-tf is a one-tower model that use tf-based vectors
to represent the queries while use the model to represent
documents.

• Query-neural-symmetric is a symmetric two-towermodel
to represent queries and passages that the two towers with
the same architectures share the same weights.

• Query-neural-asymmetric is a asymmetric two-towermodel
that the two towers do not share weights. Queries and pas-
sages are represented with different towers.

The results are reported in Table 4, from where we find that the
neural representation of queries with the symmetric two-tower
model brings better performance on MRR and Recall on our built

Dev set. The symmetric model performs better than the asymmetric
model might because asymmetric two-tower architecture leads to
twice the quantity of parameters, which makes the model more
difficult to converge. We further analyze the distribution of passage
term weights with different query representation methods and find
that tf-based representation of query results in a sharper distribu-
tion compared to the neural representation. The reason may be that
the query representation is fixed during training, the model needs
to give more weights to the relative terms in the positive passage.

5.4 Analysis of TermWeighting
To further evaluate the ability of SparTerm on term weighting, we
normalize the term weights of passages weighted by DeepCT and
SparTerm(literal-only) to the same range and visulization them in
Figure 3. Figure 3 shows three different queries(the first column)
and the most relevant passages. The depth of the color represents
the weights of terms, deeper is higher. We find that both DeepCT
and SparTerm can figure out the most important terms and give
them higher weights. However, DeepCT obtains sparser and sharper
distributions and only activates very few terms in a passage, miss-
ing some important terms, such as “allergic reaction” in the first
case. SparTerm can yield a smoother importance distribution by
activating more terms though not appearing in the query. This dis-
tribution allows the passage to be retrieved by more queries. This
also demonstrates that our model has a better ability on pointing
out important terms in a passage.

5.5 Analysis of Term Expansion
Figure 3 shows the expanded terms and their probabilities for dif-
ferent passages predicted by the Gating Controller. The probability
of each term illustrates how likely this term to be expanded. It is
obvious that our model can really activate some important terms
not appearing in the passage but very semantically similar, espe-
cially occurring in the queries such as “sign” in the first case and
“temperature” in the second case.

In order to analyze how these words are expanded and which
category in Figure 3 do they belong to, we trace the source of each
expanded word and show the top 5 words with their logits which
contribute to the expanded word in Figure 4. We can find that there
are basically three different situations of the expanded terms:

(1) The passage2query terms such as “temperature”: Almost
every word in the passage contributes much to this kind of terms,
which seem more likely to learn from the supervised signal.

(2) Synonyms of the original terms, i.e. “weather” and “climate”,
“rainfall” and “rain”, “season, monthly” and “month”, “heat” and
“hot”.

(3) Co-occurred words for the original terms, i.e. “season, heat”-
>“summer”, “wet, humidity, weather”->“rain” and “heat, rainfall,
humidity”->“tropical, monsoon”.

The first situation is benefited by the optimization objective
of the Gating Controller while the latter two are more likely the
ability of MLM pretraining task since we reuse the MLM module
for prediction in the Gating Controller.

Preprint: arXiv:2010.0076853 total: 61

arXiv:2010.00768

LLM Research in Huawei Noah’s Ark Lab

Multi-modal Language Models

Efficient Training and Deployment

Arabic Language Models

Information Retrieval

Question Answering

Machine Translation

Poem Generation

Code Generation

Math Word Problem Solving

Content

Read before Generate!
Faithful Long Form Question Answering with Machine Reading

Q: How do Jellyfish
function without brains?

Question
Encoder

DPR

Wikipedia
pages

Top-K doc&Q pairs

...

Reader

Reader

Reader

Encoder

Encoder

Encoder

Decoder

...
...

...
...

...

...

Figure 2: Overview architecture of our RBG framework. RBG comprises a supporting document retriever, a
document reader and a generator.

The MRC model takes the concatenation of the re-
trieved document Di and question Q as input, and
outputs the prediction of the start and end position
of the potential evidence spans in Di. Specifically,
it outputs two probability distributions over the to-
kens in Di: P s

i (ws) and P e
i (ws), where P s

i (ws) /
P e
i (ws) is the probability that the token ws is the

start/end of the evidence span in Di.

Sentence evidence probability Originally, the
MRC model was designed to give accurate, short-
phrase span prediction (Rajpurkar et al., 2016), but
we argue that a sentence-level evidence probabil-
ity will be better in our scenario. The support-
ing sentences can provide the minimum required
context information for each answer span, which
is quite important, especially in multi-document
generation (Xu and Lapata, 2020). We define our
sentence-level evidence probability score for the
i-th document P i

rea(S) as the summation over all
token-level evidence probabilities in that sentence,
and it is calculated via

P i
rea(S) =

1

2

∑
ws∈S

(P s
i (ws) + P e

i (ws)) (2)

Prea(S) = Norm(P 1
rea(S); ...P

i
rea(S); ...P

K
rea(S))

(3)

We concatenate P i
rea and normalize the distribu-

tion as Prea(S), where Prea(S) denotes the final
sentence-level evidence probability in all the K
documents regarding the question.

Multi-task MRC As there are no golden an-
swer spans for LFQA data, we need a MRC
model that has enough generalization ability for
open domain questions as a starting point. We
choose SpanBERT (Joshi et al., 2020), and fur-
ther fine-tune it in a multi-task way on six large-

scale MRC datasets from the MRQA shared
task (Fisch et al., 2019) following work by Su
et al. (2019): SQuAD (Rajpurkar et al., 2016),
NewsQA (Trischler et al., 2017), TriviaQA (Joshi
et al., 2017), SearchQA (Dunn et al., 2017),
HotpotQA (Yang et al., 2018), and NatualQues-
tions (Kwiatkowski et al., 2019). The multi-task
fine-tuned MRC model R will be further jointly
trained with the generator, using the golden answer
in a distantly supervised way.

2.3 Generator

FiD-BART We choose BART as our genera-
tion backbone because of its outstanding perfor-
mance on many generation tasks, especially on
long-form abstractive summarization task (Lewis
et al., 2020a). We propose FiD-BART, follow-
ing the Fusion-in-Decoder idea from Izacard and
Grave (2021), to empower BART to deal with
multiple, long-document inputs. FiD-BART pro-
cesses each document independently in the encoder,
while performing the cross-attention in the decoder
jointly.

The encoder encodes the concatenation of each
supporting document Di and the question Q. More
precisely, we append the special tokens question:
before Q, title: and context: before the title and
text of each document Di. We denote the encoded
final representation of the encoder as henc, which
is the concatenation of the K encoder outputs hienc
(hienc ∈ Rd×li) for the ith document:

hienc = Encoder(Q;Di) (4)

henc = (h1enc, ..., h
i
enc, ..., h

K
enc) (5)

The partial structure of the decoder can be illus-
trated by Eq.(6)–(8), where hl is the representation
for the l-th decoder layer. We denote hdec as the

746

Findings of the Association for Computational Linguistics: ACL 2022, pages 744 - 756
May 22-27, 2022 c©2022 Association for Computational Linguistics

Read before Generate! Faithful Long Form Question Answering with
Machine Reading

Dan Su1∗, Xiaoguang Li2, Jindi Zhang3, Lifeng Shang2, Xin Jiang2,
Qun Liu2, and Pascale Fung1

1Center for Artificial Intelligence Research (CAiRE)
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

2Huawei Noah’s Ark Lab 3City University of Hong Kong
dsu@connect.ust.hk, lixiaoguang11@huawei.com

Abstract

Long-form question answering (LFQA) aims
to generate a paragraph-length answer for a
given question. While current work on LFQA
using large pre-trained model for generation
are effective at producing fluent and somewhat
relevant content, one primary challenge lies
in how to generate a faithful answer that has
less hallucinated content. We propose a new
end-to-end framework that jointly models an-
swer generation and machine reading. The
key idea is to augment the generation model
with fine-grained, answer-related salient infor-
mation which can be viewed as an emphasis
on faithful facts. State-of-the-art results on
two LFQA datasets, ELI5 and MS MARCO,
demonstrate the effectiveness of our method, in
comparison with strong baselines on automatic
and human evaluation metrics. A detailed anal-
ysis further proves the competency of our meth-
ods in generating fluent, relevant, and more
faithful answers.

1 Introduction

Long-form question answering (LFQA) is a task to
generate an in-depth, paragraph-length answer for
a given question (Fan et al., 2019). It is important
since many of the everyday questions that humans
deal with and pose to search engines require multi-
sentence explanations (Khashabi et al., 2021) (e.g.
why/how..?). It can be integrated with a search en-
gine (Metzler et al., 2021), or a virtual conversation
agent, and can also be used to generate explana-
tions as a complement to short-phrase answers for
open-domain questions (Kwiatkowski et al., 2019;
Yang et al., 2018), or to answer open-ended ques-
tions like those from Reddit forum “Explain Like
I’m Five” (Fan et al., 2019).

LFQA is quite a challenging task. It often in-
volves searching a large external knowledge source

∗∗ Work done during an internship at Huawei Noah’s Ark
lab

Figure 1: An example from MS MARCO (Nguyen et al.,
2016) dataset. We highlight the unfaithful snippets from
other model. Our model(RBG) generate more factually
accurate answer.

that contains millions of documents for relevant in-
formation. Then it generates a paragraph-length an-
swer from those retrieved sources. While the great
success in retrieval technique (Guu et al., 2020;
Karpukhin et al., 2020; Lee et al., 2019) can be
carried over to the LFQA setting, more challenges
lie in the generation. First, multiple documents that
contain hundreds of tokens need to be considered
for generation, raising difficulties in the direct use
of current pre-trained language models. Second, as
different documents may contain redundant, com-
plementary, or contradictory information, how to
synthesis the information and generate a faithful
answer that has less hallucinated content is even
more challenging.

While recent work on LFQA (Krishna et al.,
2021) focuses primarily on the first challenge, and
has produced fluent and somewhat relevant content,
the latter faithfulness challenge has not been ex-
plored. However, the faithfulness issue is quite im-
portant for LFQA. As the example in Fig. 1 shown,
a fluent and relevant but unfaithful answer (high-

744

FiD (Izacard and Grave, 2021) encodes each pas-
sage independently and combines all outputs from
the encoder before passing them to the decoder.
FiD has achieved superior performance on a num-
ber of open-domain QA tasks (Izacard and Grave,
2021). We implement FiD-BART, using BART as
the generation backbone, as our strongest baseline.

4 Experiment Results
4.1 Automatic Evaluation
We use the metrics unigram F1 score and ROUGE-
L (LIN, 2004) in previous work on LFQA (Petroni
et al., 2021; Krishna et al., 2021) to evaluate and
compare the generation quality of our method.

Overall Comparison Table 1 shows the perfor-
mance of various methods on the two datasets. As
shown, our RBG method outperforms all baselines
models with regard to both evaluation metrics on
both datasets. The RBG method also outperforms
the previous state-of-the-art method c-REALM+RT
on the KILT-ELI5 leaderboard3 (Krishna et al.,
2021), as shown in Table 2.

Models Eli5 MS MARCO
ROUGE-L F1 ROUGE-L F1

T5(base) 21.02 18.36 21.19 20.03
BART(large) 22.69 22.19 23.26 25.6
DPR+BART 17.41 17.88 23.01 25.13

RAG 16.11 17.24 - -
FiD 25.70 28.55 24.64 27.08

RBG(ours) 26.46 29.04 24.72 27.52

Table 1: Performance comparison between our RBG
method and the baselines on the KILT-ELI5 (Petroni
et al., 2021) and MS MARCO (Nguyen et al., 2016)
evaluation sets.

Model Retrieval Generation
PRr. R@5 F1 R-L KRL

RBG(ours) 10.83 27.25 24.53 27.13 2.62
DPR_kilt_wiki 14.83 27.69 16.45 15.91 2.46

c-REALM1 10.67 24.56 23.19 22.88 2.36
DPR+BART 10.67 26.92 17.41 17.88 1.90

RAG 11.00 22.92 14.05 14.51 1.69
BART-large 0.00 0.00 20.55 19.23 0.00

T5-base 0.00 0.00 19.08 16.10 0.00

Table 2: Results on the ELI5 test set on the KILT leader-
board. Our RBG tops the leaderboard in terms of (1)
retrieval performance, using R-precision(RPr.) and Re-
call@5(R@5), and (2) generation quality, using F1 and
ROUGE-L(R-L). These scores are combined to produce
the overall metric KILT R-L(KRL) (Petroni et al., 2021).
c-REALM1 is from (Krishna et al., 2021)

3https://evalai.cloudcv.org/web/
challenges/challenge-page/689/
leaderboard/1908

Fine-grained Comparison Intuitively, the qual-
ity of retrieved documents will affect the generation
quality, thus we provide a fine-grained performance
comparison. We split MS-MARCO evaluation set
into different subset based on the quality of the
retrieved documents4, and compare the ROUGE-L
score between FiD and RBG under each subset.

As we can see from Table 3, even though RBG
beats FiD by 0.1 Rouge-L score on the whole MS-
MARCO evaluation set, the performance gap con-
tinue increasing as the retrieval quality of the eval-
uation subset increased. This indicates that RBG
is especially effective when high-quality retrieval
documents is provided, which matches with our
intuition.

>ngram overlap 0 0.4 0.6 0.8
of documents 6980 3493 1470 489

ROUGE-L
FiD 24.64 28.04 33.62 45.25

RBG 24.72 28.59 34.38 46.29

>retrieval score 0.0 75 80 85
of documents 6980 5811 3188 1001

ROUGE-L
FiD 24.64 24.7 25.63 26.81

RBG 24.72 25.46 26.53 27.96

Table 3: Fine-grained comparison between FiD and
RBG on different subset of MS-MARCO evaluation
data.

4.2 Human evaluation

We further evaluate our model using human an-
notators, who we ask to quantify three aspects of
the generated answer, (1) fluency, which measures
whether the answer is coherent and less repetitive;
(2) relevance, which measures the amount of in-
formation relevant to answering the question, and
(3) factual correctness (also briefly called correct-
ness), which measures the correctness and faithful-
ness of all facts involved in the generated answer.

We select FiD, which is the strongest baseline
in terms of automatic metrics, for comparison. We
sample evaluation questions from the MS MARCO
dev set, which are better supported by Wikipedia
knowledge than ELI5. Table 4 shows the absolute
evaluation results of human annotation. To reduce
the impact of scale selection inconsistency of differ-
ent annotators, we also show the relative evaluation
results in Table 5. We can see that both types of

4 We consider two metrics to measure the retrieval quality
for a certain question: (1) Top-1 document retrieval score
which is the matching score output by the retriever (Equa-
tion. 1) for the top-1 document to measure the corresponding
semantic relevance to the given question, and (2) N-gram
overlap, which is the N-gram overlap between the golden
answer and the top-k retrieved documents.

748

Published in ACL2022 Findings: https://aclanthology.org/2022.findings-acl.61

54 total: 61

https://aclanthology.org/2022.findings-acl.61

LLM Research in Huawei Noah’s Ark Lab

Multi-modal Language Models

Efficient Training and Deployment

Arabic Language Models

Information Retrieval

Question Answering

Machine Translation

Poem Generation

Code Generation

Math Word Problem Solving

Content

CeMAT:
Universal Conditional Masked Language Pre-training for Neural Machine Translation

[en] Cat sat on the mat

[en] We dance on the grass [de] Wir tanzen auf dem gras

Mono.

Para.

Original

[en] Cat sat on the mat

[en] [mask] sat on the [mask]

[en] We danse [mask] the grass [de] Wir [mask] auf dem [mask]

Mono.

Para.

Masked

[en] Kedi sat on the [mask]

Encoder

Self-Attention

Feed Forward

Bidirectional Decoder

Cross-Attention

Self-Attention

Feed Forward
Encoder Decoder

[en] who are you [de] Wer bist du

Wer bist du </s>Autoregressive NMT

Encoder Bidirectional Decoder

[en] who are you [de] [mask] bist [mask]

Wer duNon-autoregressive NMT

Cat mat

on tanzen gras

mat

Pre-training Fine-tuning

Aligned code-switching & masking

dynamic dual-masking

Mono.

Para.

Figure 1: The framework for CeMAT, which consists of an encoder and a bidirectional decoder. “Mono” denotes
monolingual, “Para” denotes bilingual. During the pre-training (left), the original monolingual and bilingual inputs
in many languages are augmented (the words are replaced with new words with same semantics or “[mask]”, please
see Figure 2 for more details) and fed into the model. Finally, we predict all the “[mask]” words on the source
side and target side respectively. For fine-tuning (right), CeMAT provides unified initial parameter sets for AT and
NAT.

consists of a bidirectional encoder, a bidirectional
decoder, and a cross-attention module for bridg-
ing them. Specifically, the model is jointly trained
by MLM on the encoder and Conditional MLM
(CMLM) on the decoder with large-scale monolin-
gual and bilingual texts in many languages. Table 1
compares our model with prior works. Benefiting
from the structure, CeMAT can provide unified
initialization parameters not only for AT task, but
also for Non-autoregressive NMT (NAT) directly.
NAT has been attracting more and more attention
because of its feature of parallel decoding, which
helps to greatly reduce the translation latency.

To better train the representation capability of
the model, the masking operations are applied in
two steps. First, some source words that have been
aligned with target words are randomly selected
and then substituted by new words of similar mean-
ings in other languages, and their corresponding tar-
get words are masked. We call this method aligned
code-switching & masking. Then, the remaining
words in both source and target languages will be
masked by dynamic dual-masking.

Extensive experiments on downstream AT and
NAT tasks show significant gains over prior works.
Specifically, under low-resource conditions (< 1M
bitext pairs), our system gains up to +14.4 BLEU
points over baselines. Even for extremely high-
resource settings (> 25M), CeMAT still achieves

significant improvements. In addition, experiments
on the WMT16 Romanian→English task demon-
strate that our system can be further improved
(+2.1 BLEU) by the Back-Translation (BT; Sen-
nrich et al., 2016a).

The main contributions of our work can be sum-
marized as follows:

• We propose a multilingual pre-trained model
CeMAT, which consists of a bidirectional en-
coder, a bidirectional decoder. The model is
pre-trained on both monolingual and bilingual
corpora and then used for initializing down-
stream AT and NAT tasks. To the best of our
knowledge, this is the first work to pre-train a
unified model suitable for both AT and NAT.

• We introduce a two-step masking strategy to
enhance the model training under the setting
of bidirectional decoders. Based on a multi-
lingual translation dictionary and word align-
ment between source and target sentences,
aligned code-switching & masking is firstly
applied. Then, dynamic dual-masking is used.

• We carry out extensive experiments on AT
and NAT tasks with data of varied sizes. Con-
sistent improvements over strong competitors
demonstrate the effectiveness of CeMAT.

6380

Autoregressive MMT results:
Lang-Pairs En-Kk En-Tr En-Et En-Fi En-Lv En-Cs En-De En-Fr Avg
Source WMT19 WMT17 WMT18 WMT17 WMT17 WMT19 WMT19 WMT14
Size 91k(low) 207k(low) 1.94M(medium) 2.66M(medium) 4.5M(medium) 11M(high) 38M(extr-high) 41M(extr-high)
Direction → ← → ← → ← → ← → ← → → →
Direct 0.2 0.8 9.5 12.2 17.9 22.6 20.2 21.8 12.9 15.6 16.5 30.9 41.4 17.1
mBART 2.5 7.4 17.8 22.5 21.4 27.8 22.4 28.5 15.9 19.3 18.0 30.5 41.0 21.2
mRASP 8.3 12.3 20.0 23.4 20.9 26.8 24.0 28.0 21.6 24.4 19.9 35.2 44.3 23.8
CeMAT 8.8 12.9 23.9 23.6 22.2 28.5 25.4 28.7 22.0 24.3 21.5 39.2 43.7 25.0
∆ +8.6 +12.1 +14.4 +11.4 +4.3 +5.9 +5.2 +6.9 +9.1 +8.7 +5.0 +8.3 +2.3 +7.9

Table 2: Comprehensive comparison with mRASP and mBART. Best results are highlighted in bold. CeMAT out-
performs them on AT for all language pairs but two directions. Even for extremely high-resource scenarios(denoted
as “extr-high”), we observe gains of up to +8.3 BLEU on En→De language pair.

for Japanese and jieba6 for Chinese, and a spe-
cial normalization for Romanian (Sennrich et al.,
2016a). Following Liu et al. (2020), we balance the
vocabulary size of languages by up/down-sampling
text based on their data size when learning BPE.

Model and Settings As shown in Figure 1, we
apply a bidirectional decoder so that it can utilize
left and right contexts to predict each token. We use
a 6-layer encoder and 6-layer bidirectional decoder
with a model dimension of 1024 and 16 attention
heads. Following Vaswani et al. (2017), we use
sinusoidal positional embedding, and apply layer
normalization for word embedding and pre-norm
residual connection following Wang et al. (2019a).

Our model is trained on 32 Nvidia V100 GPUs
for 300K steps, The batch size on each GPU is 4096
tokens, and we set the value of update frequency
to 8. Following the training settings in Trans-
former, we use Adam optimizer (ε = 1e− 6, β1 =
0.9, β2 = 0.98) and polynomial decay scheduling
with a warm-up step of 10,000.

4 Autoregressive Neural Machine
Translation

In this section, we verify CeMAT provides consis-
tent performance gains in low to extremely high
resource scenarios. We also compare our method
with other existing pre-training methods and fur-
ther present analysis for better understanding the
contributions of each component.

4.1 Fine-Tuning Objective

The AT model consists of an encoder and a uni-
directional decoder. The encoder maps a source
sentence Xm into hidden representations which are
then fed into the decoder. The unidirectional de-
coder predicts the t-th token in a target languageLn

conditioned on Xm and the previous target tokens

6https://github.com/fxsjy/jieba

y<t
n . The training objective of AT is to minimize

the negative log-likelihood:

L(θ) =∑
(Xm,Yn)∈D(m,n)

|Yn|∑
t=1

− logP (ytn|Xm, y
<t
n ; θ)

(3)

4.2 Experimental Settings

Benchmarks We selected 9 different language
pairs and then use CeMAT to fine-tune on them.
They are divided into four categories according
to their data size: low-resource (< 1M), medium-
resource (> 1M and < 10M), high-resource (>
10M and < 25M), and extremely high-resource (>
25M). See Appendix B for more details.

Configuration We adopt a dropout rate of 0.1
for extremely high-resource En→Fr, En→De
(WMT19); for all other language pairs, we set the
value of 0.3. We fine-tune AT with a maximum
learning rate of 5e − 4, a warm-up step of 4000
and label smoothing of 0.2. For inference, we use
beam search with a beam size of 5 for all transla-
tion directions. For a fair comparison with previous
works, all results are reported with case-sensitive
and tokenized BLEU scores.

4.3 Results and Analysis

Main Results We fine-tune AT systems initial-
ized by our CeMAT on 8 popular language pairs,
which are the overlapping language pairs in exper-
iments of mBART (Liu et al., 2020) and mRASP
(Lin et al., 2020). Table 2 shows the results. Com-
pared to directly training AT models, our systems
with CeMAT as initialization obtain significant im-
provements on all four scenarios. We observe gains
of up to +14.4 BLEU and over +11.4 BLEU on
three of the four tasks on low-resource scenarios,
i.e., En↔Tr. Without loss of generality, as the scale
of the dataset increases, the benefits of pre-training

6383

Non-autoregressive MMT results:
Source IWSLT14 WMT16 WMT14 Avg
Lang-Pairs En→De De→En En→Ro Ro→En En→De De→En
Transformer (Vaswani et al., 2017) 23.9 32.8 34.1 34.5 28.0 32.7 31.0
Mask-Predict (Ghazvininejad et al., 2019) 22.0 28.4 31.5 31.7 26.1 29.0 28.1
mRASP (Lin et al., 2020) 23.9 30.3 32.2 32.1 26.7 29.8 29.2
CeMAT (Ours) 26.7 33.7 33.3 33.0 27.2 29.9 30.6

Table 5: Comprehensive comparison with two strong baselines. “mRASP” denotes using mRASP to initialize
Mask-Predict, “CeMAT (Ours)” denotes using our CeMAT to initialize. We obtain consistent and significant
improvements on all language pairs, outperforming AT on IWSLT14 tasks. Best non-autoregressive results are
highlighted in bold.

6 Related Work

Multilingual Pre-training Task Conneau and
Lample (2019) and Devlin et al. (2019) proposed to
pre-train a cross-lingual language model on multi
language corpora, then the encoder or decoder of
model are initialized independently for fine-tuning.
Song et al. (2019), Yang et al. (2020) and Lewis
et al. (2020) directly pre-trained a Seq2Seq model
by reconstructing part or all of inputs and achieve
significant performance gains. Recently, mRASP
(Lin et al., 2020) and CSP (Yang et al., 2020) apply
the code-switching technology to simply perform
random substitution on the source side. Another
similar work, DICT-MLM (Chaudhary et al., 2020)
introduce multilingual dictionary, pre-training the
MLM by mask the words and then predict its cross-
lingual synonyms. mRASP2 (Pan et al., 2021) also
used code-switching on monolingual and bilingual
data to improve the effectiveness, but it is essen-
tially a multilingual AT model.

Compared to previous works: 1) CeMAT is the
first pre-trained Seq2Seq model with a bidirectional
decoder; 2) We introduce aligned code-switching &
masking, different from traditional code-switching,
we have two additional steps: align between source
and target, and CSM; 3) We also introduce a dy-
namic dual-masking method.

Autoregressive Neural Machine Translation
Our work is also related to AT, which adopts an
encoder-decoder framework to train the model
(Sutskever et al., 2014). To improve the perfor-
mance, back-translation, forward-translation and
related techniques were proposed to utilize the
monolingual corpora (Sennrich et al., 2016a; Zhang
and Zong, 2016; Edunov et al., 2018; Hoang et al.,
2018). Prior works also attempted to jointly train a
single multilingual translation model that translates
multi-language directions at the same time (Firat
et al., 2016; Johnson et al., 2017; Aharoni et al.,

2019; Wu et al., 2021). In this work, we focus on
pre-training a multilingual language model, which
can provide initialization parameters for the lan-
guage pairs. On the other hand, our method can use
other languages to further improve high-resource
tasks.

Non-autoregressive Neural Machine Trans-
lation Gu et al. (2018) first introduced a
transformer-based method to predict the complete
target sequence in parallel. In order to reduce
the gap with the AT model, Lee et al. (2018) and
Ghazvininejad et al. (2019) proposed to decode the
target sentence with iterative refinement. Wang
et al. (2019b) and Sun et al. (2019) utilized aux-
iliary information to enhance the performance of
NAT. One work related to us is Guo et al. (2020),
which using BERT to initialize the NAT. In this
work, CeMAT is the first attempt to pre-train a mul-
tilingual Seq2Seq language model on NAT task.

7 Conclusion

In this paper, we demonstrate that multilingually
pre-training a sequence-to-sequence model but
with a bidirectional decoder produces significant
performance gains for both Autoregressive and
Non-autoregressive Neural Machine Translation.
Benefiting from conditional masking, the decoder
module, especially the cross-attention can learn the
word representation and cross-lingual representa-
tion ability more easily. We further introduce the
aligned code-switching & masking to align the rep-
resentation space for words with similar semantics
but in different languages, then we use a dynamic
dual-masking strategy to induce the bidirectional
decoder to actively obtain the information from the
source side. Finally, we verified the effectiveness
of these two methods. In the future, we will inves-
tigate more effective word alignment method for
aligned code-switching & masking.

6386

Published in ACL2022: https://aclanthology.org/2022.acl-long.442

55 total: 61

https://aclanthology.org/2022.acl-long.442

LLM Research in Huawei Noah’s Ark Lab

Multi-modal Language Models

Efficient Training and Deployment

Arabic Language Models

Information Retrieval

Question Answering

Machine Translation

Poem Generation

Code Generation

Math Word Problem Solving

Content

GPT-based Classical Chinese Poetry Generation
• Pre-trained GPT model on Chinese news

corpus, then fine-tuned with 250,000

Chinese poetries and couplets

• No human crafted rules or features

• Generate well-formed and high-quality

poetries given the title, with good diversity

• Online demo on Huawei Cloud, gaining

great popular on Chinese social media

Preprint: https://arxiv.org/abs/1907.00151

56 total: 61

https://arxiv.org/abs/1907.00151

LLM Research in Huawei Noah’s Ark Lab

Multi-modal Language Models

Efficient Training and Deployment

Arabic Language Models

Information Retrieval

Question Answering

Machine Translation

Poem Generation

Code Generation

Math Word Problem Solving

Content

Pangu-Coder: a Function Level Code Generation Model

MODEL SIZE nCNTX nVOCAB
DATA TRAIN HUMANEVAL (%)
(GB) TOKENS PASS@1 PASS@10 PASS@100

GPT-NEO [10] 125 M 2,048 50 K 825 300 B 0.75 1.88 2.97

CODEX [16] 300 M 4,096 50 K 729 400 B 13.17 20.37 36.27
ALPHACODE [47] 302 M 2,304 8 K 715 - 11.60 18.80 31.80
CODEGEN MULTI [51] 350 M 2,048 50 K 1,595 250 B 6.67 10.61 16.84
CODEGEN MONO [51] 350 M 2,048 50 K 1,812 325 B 12.76 23.11 35.19
PANGU-CODER 317 M 1,024 42 K 147 211 B 17.07 24.05 34.55

CODEX 679 M 4,096 50 K 729 400 B 16.22 25.70 40.95
ALPHACODE 685 M 2,304 8 K 715 - 14.20 24.40 38.80

ALPHACODE 1.1 B 2,304 8 K 715 - 17.10 28.20 45.30
GPT-NEO 1.3 B 2,048 50 K 825 380 B 4.79 7.47 16.30

CODEX 2.5 B 4,096 50 K 729 400 B 21.36 35.42 59.50
PANGU-CODER 2.6 B 1,024 42 K 147 387 B 23.78 35.36 51.24
CODEGEN MULTI 2.7 B 2,048 50 K 1,595 500 B 14.51 24.67 38.56
CODEGEN MONO 2.7 B 2,048 50 K 1,812 650 B 23.70 36.64 57.01
GPT-NEO 2.7 B 2,048 50 K 825 420 B 6.41 11.27 21.37

GPT-J [67] 6 B 2,048 50 K 825 402 B 11.62 15.74 27.74
CODEGEN MULTI 6.1 B 2,048 50 K 1,595 1 T 18.20 28.70 44.90
CODEGEN MONO 6.1 B 2,048 50 K 1,812 1.3 T 26.13 42.29 65.82
INCODER [27] 6.7 B 2,048 27.6 K 216 52 B 15.20 27.80 47.00

Table 4: Pass@k rates on the HumanEval dataset, among various models. Sizes are reported in
thousands (K), millions (M), billions (B) and trillions (T).9

MODEL SIZE nCNTX nVOCAB
DATA TRAIN MBPP (%)
(GB) TOKENS PASS@1 PASS@10 PASS@100

INCODER [27] 6.7 B 2,048 22.6 K 216 52 B 19.40 - -

317 M 1,024 42 K 147 211 B 16.20 34.39 53.74PANGU-CODER 2.6 B 1,024 42 K 147 387 B 23.00 43.60 59.64

Table 5: Pass@k rates on the MBPP dataset.

and GPT-J was obtained via the model cards available11. For INCODER, the vocabulary size was
calculated as 55% of GPT-2 vocabulary, based on Fried et al. [27]. For the rest of the models, explicit
information was provided in the corresponding papers. For all models, pass@k rates are computed
with 200 samples, except for ALPHACODE where the reported rates used 1, 000 samples.12

PANGU-CODER results in the best performance in the 300M family of models for pass@1 and
pass@10. For pass@100, PANGU-CODER performs lower than CODEGEN-MONO and CODEX, but
the latter has been trained on a 2x and 4x larger input context respectively, and for at least four times
more data and more tokens. Looking at the 2.6B models family, PANGU-CODER again achieves
the best pass@1 performance. On the other hand, PANGU-CODER underperforms compared to
CODEGEN-MONO and CODEX on pass@10 and pass@100, but similarly to the 300M family of
models, these two have been trained with a larger context, on more data, and for more tokens.

Regarding the MBPP dataset, most other models do not report zero-shot results on it, with only
INCODER reporting pass@1. PANGU-CODER 2.6B outperforms INCODER even though it is less
than half its size (2.6B vs 6.7B parameters). Furthermore, even though we are not able to make an
apples-to-apples comparison with the PANGU-CODER 317M model due to their size difference, it is
interesting to note that it is only 3.2 points below INCODER on pass@1.

11https://huggingface.co/EleutherAI
12We include the decoder-only baseline presented by ALPHACODE, and not the encoder-decoder model, as

HumanEval results are only reported on the former. The number of train tokens of this baseline are not reported.
12We did not include even larger scale models, since they would not be directly comparable with this work.

9

Return a \n

<eoc>

<descr>

N-1210

Token

Position

Transformer
Layers

Query Layer

N

+ + + +
...

Figure 1: Schematic of the PANGU-α architecture.

MODEL
LAYERS HIDDEN SIZE FFN size # HEADS CONTEXT SIZE VOCAB

(L) (d) (dff) (Nh) (nCNTX) (nVOCAB)

PANGU-CODER 317 M 24 1,024 4,096 16 1,024 41,865
PANGU-CODER 2.6 B 32 2,560 10,240 32 1,024 41,865

Table 2: PANGU-CODER model sizes and configurations.

specific inputs and the corresponding expected outputs, e.g. greatest_common_divisor(3, 5)
= 1. The model is then asked to produce the body of the code, and is evaluated against a number of
held-out unit tests to ensure that the problem is properly solved.

3 Training Methodology

As mentioned in the introduction, PANGU-CODER uses PANGU-α [73] as its underlying architecture.
PANGU-α was first developed to investigate the effect of large-scale pre-trained language models on
Chinese NLP tasks. Its architecture (see Figure 1) was designed for scaling to hundreds of billions of
parameters, and was implemented in MindSpore Auto-parallel5 to allow for training parallelization
across a cluster of 2,048 Ascend 910 AI processors6. The current version of PANGU-CODER model
is implemented in Pytorch [53] and its training was done on Nvidia V100 GPU cards.

Similarly to GPT, PANGU-α is a uni-directional autoregressive decoder-only transformer with an
additional attention layer on top, where an embedding pn ∈ Rd indicating the next token position is
used as the query vector in the attention mechanism.

The attention weights in the extra layer are computed as follows:

αh = pn W
q
h W

k>
h H>L , (1)

where W q
h ,W

k
h ∈ Rd×d/Nh are projection matrices, and HL ∈ RV×d corresponds to the token

representations obtained from the top transformer layer, with h representing the index of the attention
head, d being the hidden dimension, Nh the number of attention heads, and V the vocabulary size.

For Chinese NLP tasks, multiple sized models were trained up to 200B parameters; for programming
language modeling, we test the following model configurations, as shown in Table 2. In the remainder
of this section, we discuss the data used for training and evaluation, and show how we use the PANGU-
α model, together with its accompanying tokenizer and vocabulary, to train it on code-specific data
using various strategies. The section concludes with an analysis of the effect of different decoding
strategies on the models’ zero-shot performance.

5https://www.mindspore.cn/en
6https://e.huawei.com/en/products/servers/ascend

3

▶ Autoregressive LM architecture
(317M/2.6B) herited from Pangu-alpha

▶ Two-stage training schema, with
different training data formating
▶ Stage-1: 188B tokens
▶ Stage-2: 42B tokens

▶ Outperform Codex/AlphaCode models
with similar sizes on Pass@1 metric on
HumanEval dataset.

Docstr-Code 2

Docstr-Code 2 Code 4

...

Code |EA|-1

Instance 1

Instance 2

Instance IA Docstr-Code |EA|

Code 3

Docstr-Code 1

(a) Stage-1 instance formation, where all available data are
concatenated and split at a given length.

Instance 1

Instance 2

Instance IB

Docstr-Code 1

...

Docstr-Code 2

Docstr-Code |EB|

(b) Stage-2 instance formation, with each
docstring-code pair fed separately to the model.

Figure 3: Input formats during stage-1 and stage-2 training.

In order to formulate the model input, we concatenate all EA training examples as a single sequence
(both code-only and docstring-code examples) and generate training instances by splitting the
concatenated sequence into IA ≤ |EA| chunks of 1, 024 subwords, including the inserted special
tokens, as shown in Figure 3a. The model is then trained for 188 billion tokens in total.

3.2.2 Stage-2 Training

For the second stage, we form the model inputs by exclusively considering |EB | ≤ |EA| docstring-
code examples and treating each as a single training instance IB = |EB |, as shown in Figure 3b.
To further reduce noise in the data, we removed edge cases where the docstring was shorter than
19 words, the function body longer than 400, or where their length ratio was greater than 32; these
values were empirically determined through observation of the curated datasets’ statistics.

We explore several objectives for stage-2 model training on Python code, each consisting of mixtures
of joint losses, focusing independently on the docstring and code subsequences. The combinations
are primarily motivated by the shift in focus to the downstream task of text-to-code generation during
stage-2. We present the individual losses below:

Code-CLM: Causal Language Modeling on Code This loss is computed by applying CLM
exclusively on the code subsequence, hence it is named CODE-CLM. Enforcing this objective during
pre-training brings us closer to the target objective of the downstream task.

LCODE-CLM(X) = − 1

NC

NC∑

n=1

log p(cn|ci≤n−1, d1, ..., dND
), (3)

As shown in Equation (3), and depicted in Figure 4, each code token ci is predicted based on all
previous tokens, including the tokens of docstring d ∈ XD.

... _loss_pass _ <python> \n _ _ de f _ _ X

PanGu-Coder

...)(

_ _ de f _ _ X) <eoc>

_one _forward<descr> _Perform

...

Figure 4: CODE-CLM: Causal Language Modeling over code-only tokens.

Docstr-MLM: Masked Language Modeling on Docstring Since the down-stream task is not
reliant on next word prediction for the docstring, this loss calculates standard Masked Language Mod-
eling (MLM) exclusively on the docstring (DOCSTR-MLM) as depicted in Figure 5a. Specifically, a
few random M < ND tokens in the docstring are replaced with a mask, a random token or the same
token with 0.8/0.1/0.1 chance, respectively, similar to Devlin et al. [23].

In contrast to models that perform MLM in a bidirectional fashion, using a single decoder network
(namely prefix LMs) [24, 8, 31], in our case we do not change the underlying attention mechanism of
the model. As a result, the masked docstring tokens are predicted by only attending to previous ones.

6

Technical Report: https://arxiv.org/abs/2207.11280

57 (1) total: 61

Pangu-Coder: a Function Level Code Generation Model

57 (2) total: 61

Pangu-Coder: a Function Level Code Generation Model

57 (3) total: 61

Pangu-Coder: a Function Level Code Generation Model

57 (4) total: 61

Pangu-Coder: a Function Level Code Generation Model

57 (5) total: 61

SynCoBERT:
Syntax-Guided Multi-Modal Contrastive Pre-Training for Code Representation

▶ Novel pre-training objectives originating from the symbolic and syntactic properties of source code:
▶ Identifier Prediction (IP)
▶ AST Edge Prediction (TEP)

▶ A multi-modal contrastive learning strategy to maximize the mutual information among different modalities.
▶ Extensive experiments on four downstream tasks: code search, clone detection, code defect detection and

code translation.

Code sequenceText Sequence AST sequence

return the sum ...

[CLS] return the [MASK] ... [SEP]

... result = x + y ...

... result = [MASK] + y ... [SEP]

... assignment result = ...

... assignment result [MASK] ...

sum =x

MMLM IP

✔
✔

✖

TEP

[SEP]

Comment

Return the sum

of two numbers

Source Code Abstract Syntax Tree

......

(a) SYNCOBERT pre-training over MMLM, IP and TEP objectives

NL-PL-AST sample x2

(b) Multi-modal contrastive pre-training on NL-PL paired data

batch b1

(c) Positive and negative sampling for xi

positive

negative ...

function_definition

block

expression_statement return_statement

assignment

result = binary_operator

return result

x + y

l=12

l=2

l=1

SYNCOBERT

1 2 3

1 2 31 0 1 0 1

Multi-Modal Contrastive Training

PL-AST sample x1

w c a[CLS] [SEP] [SEP]

1. MASK(x2, seed1)

2. Swap PL AST

1. MASK(x2, seed2)

SYNCOBERT

[SEP]

SYNCOBERT

MLP MLP

v2
+

v2

[CLS] c [SEP] [SEP]a w[CLS] [SEP]

SYNCOBERT SYNCOBERT

MLP MLP

v1
+

 v1

NL sample x1
+

w c a[CLS] [SEP] [SEP] [SEP] w ca[CLS] [SEP] [SEP] [SEP]

(left) (right)

xi xi
+

def add_func(x,y):
 result = x + y

 return result

x2 x2
+

...

batch b2

...

...

...

...

...

...

Figure 3: Different scenes of SYNCOBERT pre-training. (a) SYNCOBERT takes source code paired with comment and the
corresponding AST as the input, and is pre-trained with MMLM, IP, TEP objectives. (b) Positive sampling for NL-PL paired
data, (left) NL vs PL-AST, (right) NL-PL-AST vs NL-AST-PL. (c) An illustration about positive and negative pairs, including
in-batch and cross-batch negative sampling.

size, yMMLM
i denotes the label of the masked token i, and

pMMLM
i is the predicted probability of token i.

2.3 Identifier Prediction (IP)
Previous works often overlook the symbolic property of pro-
gramming languages. As a typical symbol, the identifier
plays an important role in source codes. It can be replaced
by another string without affecting the logic of the source
code. As it is prohibitive the exhaustively predict a large
number of code token types in source code, we only divide
the code token types into identifier or non-identifier, con-
sidering the importance and large proportion of identifiers.
Different from MMLM (predicting 15% code tokens), we
pose the identifier prediction objective over all code tokens.
For each token in the source code, a label 1 is applied if it
is an identifier, and a label 0 is applied otherwise (c.f. Fig-
ure 3(a)). Therefore, the IP loss function is a binary classifi-
cation loss defined as:

LIP =−
∑

i∈c
[yIPi lnpIPi +(1− yIPi)ln(1− pIPi)] , (3)

where pIPi is the predicted identifier probability of the i-th
code token, and yIPi is the label of the i-th code token.

2.4 AST Edge Prediction (TEP)
When converting an AST tree into a sequence, some crucial
structural information might get lost. Some existing stud-
ies, such as Tree Transformer (Wang, Lee, and Chen 2019)
and Tree LSTM (Tai, Socher, and Manning 2015), put trees
into models by introducing additional modules. Inspired by
the edge masking technique over data-flow graphs proposed
in GraphCodeBERT (Guo et al. 2021), we design an AST

edge prediction objective to encode the tree structure in-
formation into the model simply and directly without in-
troducing additional modules. Taking the token “result”
as an example in Figure 3(a), there is an edge between to-
kens (“assignment”, “result”), and there is no edge
between (“result”, “=”). To incorporate such tree struc-
tural information, we mask edges in the AST and ask the
model to predict these edges. Formally, the loss function of
this TEP objective is defined as:

LTEP =−
∑

(i,j)∈Na

[yTEP
(i,j) lnpTEP

(i,j) +(1−yTEP
(i,j))ln(1−pTEP

(i,j))] , (4)

whereNa represents the set of all AST node pairs. yTEP
(i,j) is 1

if there is an edge between the i-th and j-th nodes, otherwise
yTEP
(i,j) = 0. pTEP

(i,j) is the probability of whether there is an
edge between the i-th and j-th nodes, which is calculated
by dot product using representations of these two nodes. A
sigmoid activation function is utilized to normalize the value
of pTEP

(i,j) within the range of 0 to 1.

2.5 Multi-Modal Contrastive Learning (MCL)
Previous works (Li et al. 2020; Reimers and Gurevych
2019) have shown that native sentence representations de-
rived from BERT are dominated by high-frequency tokens.
This token imbalance issue is even more serious in codes.
Taking the Python language as an example, the “def” to-
ken appears in almost all functions. Contrastive learning en-
courages the representation of the original sequence to be
closer to the representation of the “positive” augmented se-
quence, while staying away from representations of “nega-
tive” sequences, making the model learn a more even deci-
sion boundary across different data points to reconcile the

Table 1: Results on the natural language code search task evaluating with MRR, using the AdvTest and CodeSearch datasets.

Model AdvTest CodeSearch
Python Ruby Javascript Go Python Java PHP Average

NBow - 16.2 15.7 33.0 16.1 17.1 15.2 18.9
CNN - 27.6 22.4 68.0 24.2 26.3 26.0 32.4
BiRNN - 21.3 19.3 68.8 29.0 30.4 33.8 33.8
Transformer - 27.5 28.7 72.3 39.8 40.4 42.6 41.9
RoBERTa 18.3 58.7 51.7 85.0 58.7 59.9 56.0 61.7
RoBERTa (code) - 62.8 56.2 85.9 61.0 62.0 57.9 64.3
CodeBERT 27.2 67.9 62.0 88.2 67.2 67.6 62.8 69.3
GraphCodeBERT 35.2 70.3 64.4 89.7 69.2 69.1 64.9 71.3
SYNCOBERT 38.1 72.2 67.7 91.3 72.4 72.3 67.8 74.0

3.2 Evaluation Tasks, Datasets, and Metrics
Since SYNCOBERT belongs to the BERT-like code pre-
trained models, it is more suitable for programming lan-
guage understanding (PLU) tasks, so we choose all three
PLU tasks in CodeXGLUE (Lu et al. 2021), including nat-
ural language code search, code clone detection, and code
defect detection. To reflect the generality of the model, we
also select a programming language generation (PLG) task,
such as program translation.

Natural Language Code Search is to match the most se-
mantically relevant code functions through natural language
queries. We use the AdvTest dataset (Lu et al. 2021) to con-
duct the experiment on Python language. In order to evaluate
other programming languages, we also adopt CodeSearch
dataset (Guo et al. 2021), including six programming lan-
guages (Ruby, Javascript, Go, Python, Java, PHP). We adopt
Mean Reciprocal Rank (MRR) to evaluate the performances
of all code search methods.

Code Clone Detection is to identify the existence of
code clone issues by measuring the similarity between two
code snippets. We fine-tune SYNCOBERT on the Big-
CloneBench (Svajlenko et al. 2014) and POJ-104 (Mou et al.
2016) datasets. In the BigCloneBench dataset (Java), given
two codes, the task is to judge whether they are semantically
similar, evaluating by Precision, Recall, and F1-score. In the
POJ-104 dataset (C/C++), given a code, the task retrieves
499 codes evaluating by Mean Average Precision (MAP).

Code Defect Detection is to identify whether it is an in-
secure code that may attack software systems.It can be re-
garded as a binary classification task.We evaluate all models
on Defects4J dataset (C language) (Zhou et al. 2019), using
the Accuracy score.

Program Translation is to translate the code of one
programming language into another. We adopt CodeTrans
dataset (Chen, Liu, and Song 2018), which contains the mu-
tual translation of C# and Java. All methods are evaluated by
BLEU-4, Exact Match, and CodeBLEU (Lu et al. 2021).

All datasets except CodeSearch are provided in
CodeXGLUE (Lu et al. 2021), and the default train-
ing/validation/testing splits are used. All evaluation task
datasets and fine-tuning details are presented in the
supplementary materials.

3.3 Baseline Methods

We compare SYNCOBERT with various state-of-the-art
methods in two categories. In the first category, models are
directly trained on the evaluation task from scratch. In the
second category, models are pre-trained on unlabeled cor-
pus first and then fine-tuned on the evaluation task.

Training from Scratch
• NBow is short for bag-of-words, which ignores the word

order, grammar, syntax, and other elements of the se-
quence. It selects candidates based on the number of
shared works for natural language code search tasks.

• Naive copy, PBSMT are used in program translation
tasks. Naive copy means copying the source code as
the translation result. PBSMT (Koehn, Och, and Marcu
2003) is a statistical machine translation method based on
phrases.

• TextCNN (Kim 2014) is a CNN-based model to capture
the features of NL or PL at the word level.

• BiLSTM (Cho et al. 2014) is a Seq2Seq model based on
bidirectional LSTM with an attention mechanism (Luong,
Pham, and Manning 2015).

• Transformer (Vaswani et al. 2017) is the base architec-
ture of SYNCOBERT and other pre-trained models. We
use the same number of layers and hidden size as pre-
trained models.

Pre-Trained Models
• RoBERTa (Liu et al. 2019) is pre-trained on natural lan-

guages.
• RoBERTa(code) is a varient of RoBERTa, and is pre-

trained on source code from CodeSearchNet corpus.
• code2vec (Alon et al. 2019) uses a soft-attention mecha-

nism on AST paths of the code, and aggregate all of their
vector representations into a single vector. Coimbra et al.
(2021) pre-trained the code2vec on open-source C lan-
guage corpus for code defect detection task.

• CodeBERT (Feng et al. 2020) is pre-trained on PL-NL
pairs with MLM and RTD pre-training objectives.

• GraphCodeBERT (Guo et al. 2021) is pre-trained on the
basis of CodeBERT, integrating data flow of codes.

Table 4: Results on the code translation task with BLEU, Accuracy and CodeBLEU score, using the CodeTrans dataset.

Methods C#→Java Java→C#
BLEU Exact Match CodeBLEU BLEU Exact Match CodeBLEU

Naive copy 18.69 0.0 - 18.54 0.0 -
PBSMT 40.06 16.1 43.48 43.53 12.50 42.71
Transformer 50.47 37.90 61.59 55.84 33.00 63.74
RoBERTa (code) 71.99 57.90 80.18 77.46 56.10 83.07
CodeBERT 72.14 58.80 79.41 79.92 59.00 85.10
GraphCodeBERT 72.64 58.80 - 80.58 59.40 -
SYNCOBERT 76.52 61.30 82.22 80.75 60.40 84.85

Table 5: Ablation study on the natural language code search
task evaluating with MRR, using the CodeSearch dataset.

Models Ruby JS Go PY Java PHP Avg.
SYNCOBERT 72.2 67.7 91.3 72.4 72.3 67.8 74.0
w/o TEP 72.0 67.5 91.1 72.2 71.9 67.6 73.7

w/o IP 71.4 66.7 90.5 71.6 71.2 66.9 73.1
w/o MCL 70.6 64.2 89.3 68.6 68.7 64.6 71.0

5 Related Work
Pre-Trained Models on Programming Language With
the success of pre-trained models in NLP, some recent works
attempt to extend the pre-training technologies to codes. The
pre-trained models on codes promote the development of
code intelligence. Kanade et al. (2020) developed CuBERT,
which is pre-trained on the Python language. They adopted
the masked language modeling objective of BERT to ob-
tain general code representations. Feng et al. (2020) pro-
posed CodeBERT, which is pre-trained on NL-PL pairs in
six programming languages, adding a replaced token de-
tection objective (Clark et al. 2020). Guo et al. (2021) de-
veloped GraphCodeBERT based on CodeBERT consider-
ing the data flow of codes. Besides the BERT-like models,
Svyatkovskiy et al. (2020) and Liu et al. (2020) respec-
tively proposed CodeGPT and CugLM for code comple-
tion task based on the transformer (Vaswani et al. 2017) de-
coder. Ahmad et al. (2021) proposed PLBART based on the
BART (Lewis et al. 2020) architecture, which is pre-trained
on large-scale Java and Python functions paired with nat-
ural language comments via denoising autoencoding. Phan
et al. (2021) proposed CoTexT follows the architecture of T5
(Raffel et al. 2019), which employs denoising sequence-to-
sequence pre-training on multiple programming languages.
Jiang et al. (2021) proposed TreeBERT, an encoder-decoder
architecture, incorporating the AST into the model. It is pre-
trained by tree masked language modeling (TMLM) and
node order prediction (NOP) objectives. TreeBERT does not
consider the edges in AST, which is not sufficient to exploit
rich syntactic structure information within edges. Neither of
them takes into account the symbolic property of program-
ming languages. Further exploration of the multi-modal po-
tential of programming languages is still insufficient.

Contrastive Learning Contrastive learning has become
an emerging field due to its great success in computer vi-

sion (Chen et al. 2020; Misra and van der Maaten 2020;
Tschannen et al. 2020). Some works use different data aug-
mentations (spatial/geometric and appearance transforma-
tions) to make an image agree with each other, improving
the quality of visual representations. Inspired by these, sev-
eral works try to use contrastive learning on NL and PL.
Fang and Xie (2020) proposed CERT model, treating back-
translated sentence and original sentence as a positive pair.
Giorgi et al. (2020) presented DeCLUTR model, consider-
ing that different spans in the same document are similar to
each other. Bui, Yu, and Jiang (2021) and Jain et al. (2021)
exploited the contrastive learning on codes. they trained the
neural network over a contrastive learning objective to com-
pare similar and dissimilar code snippets. However, they
only handle the single modality of code, and ignore the
multi-modal characteristic of programming languages.

Multiple modalities contain complementary information
that offers the potential for drawing useful connections
across different modalities. Some recent works attempt to
adopt multi-modal contrastive learning to mine more com-
prehensive representations (Yuan et al. 2021; Xu et al. 2021;
Hassani and Ahmadi 2020). Yuan et al. (2021) proposed a
method to improve visual representations embracing multi-
modal data. They exploited intrinsic data properties within
each modality and semantic information from cross-modal
correlation simultaneously. Xu et al. (2021) proposed a con-
trastive multi-modal clustering framework to mine high-
level semantic information, considering both multi-modal
consistency and diversity. Hassani and Ahmadi (2020) pro-
posed a multi-view method for learning node and graph level
representations by contrasting structural views of graphs.

6 Conclusion
In this paper, we have proposed SYNCOBERT, a syntax-
guided multi-modal contrastive pre-training framework for
code representation. Considering the symbolic and syntactic
property of source code, we design two new pre-training ob-
jectives to predict identifiers, and edges between two nodes
of AST, respectively. Meanwhile, to exploit the complemen-
tary information in semantically equivalent modalities (i.e.,
code, comment, AST) of code, We propose a multi-modal
contrastive learning strategy to maximize the mutual infor-
mation among different modalities. Comprehensive experi-
ments conducted on four code intelligence tasks demonstrate
that SYNCOBERT achieves state-of-the-art with the same
pre-training corpus and model size.

Preprint: http://arxiv.org/abs/2108.04556
58 total: 61

http://arxiv.org/abs/2108.04556

LLM Research in Huawei Noah’s Ark Lab

Multi-modal Language Models

Efficient Training and Deployment

Arabic Language Models

Information Retrieval

Question Answering

Machine Translation

Poem Generation

Code Generation

Math Word Problem Solving

Content

Generate and Rank: A Multi-task Framework for Math Word Problems

▶ Generator: Finetune BART on MWP seq2seq task

▶ Ranker: Sequence pair classification task
▶ Feed problem into encoder and expression into

decoder
▶ Joint training: Share encoder and decoder

Published in Findings of EMNLP 2021: https://aclanthology.org/2021.findings-emnlp.195.pdf

59 total: 61

https://aclanthology.org/2021.findings-emnlp.195.pdf

Large Language Models (LLMs): Background

Pangu Models

LLM Research in Huawei Noah’s Ark Lab

Future Work

Content

Future Work

▶

60 total: 61

Large Language Models (LLMs): Background

Pangu Models

LLM Research in Huawei Noah’s Ark Lab

Future Work

Content

Summary

Large Language Models (LLMs): Background

Pangu Models

LLM Research in Huawei Noah’s Ark Lab

Future Work

Thank you!

把数字世界带入每个人、每个家庭、
每个组织，构建万物互联的智能世界。
Bring digital to every person, home and organization
for a fully connected, intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd.
All Rights Reserved.

The information in this document may contain
predictive statements including, without limitation,
statements regarding the future financial and
operating results, future product portfolio, new
technology, etc. There are a number of factors that
could cause actual results and developments to
differ materially from those expressed or implied in
the predictive statements. Therefore, such
information is provided for reference purpose only
and constitutes neither an offer nor an acceptance.
Huawei may change the information at any time
without notice.

	Large Language Models (LLMs): Background
	What is a Large Language Model?
	From Pre-trained Language Models (PLMs) to LLMs
	List of typical LLMs
	The road map of GPT-3 families
	Pros and Cons of LLMs

	Pangu Models
	PanGu-α: A Chinese 200-billion-parameters dense language lodel
	Pangu-α: A Large-scale Autoregressive Pretrained Chinese Language Model
	Pangu-α: Model architecture
	Pangu-α: Model sizes and data collection and filtering
	Pangu-α: Data composition and sampling strategy
	PanGu-α: Training techniques - Model Parallelization
	Pangu-α: Training techniques - Parallelization strategy
	PanGu-α: Training techniques - 3-D parallel training
	PanGu-α: Training techniques - Optimizer state parallel
	PanGu-α: Training techniques - Re-computing
	PanGu-α: Training techniques - Heterogeneous computing
	Pangu-α: Training curves
	Pangu-α: Experimental results
	Pangu-α: Release (May 2021)
	Pangu-α: Influence
	Pangu-α: Examples - Text summarization
	Pangu-α: Examples - Title generation
	Pangu-α: Examples - Open domain QA
	Pangu-α: Examples - Dialog generation
	Pangu-α: Examples - Stylized text generation
	Pangu-α: Examples - Gaokao essay generation
	Pangu-α: Examples - Advertisement generation

	Pangu-Σ series: a multi-domian one-trillion-parameters sparse language model
	Pangu-Σ: A multi-domian one-trillion-parameters sparse language model
	Pangu-Σ: Architecture
	Pangu-Σ: Randomly-Routed Experts (RRE)
	Pangu-Σ: Multi-task Life-long Learning
	Pangu-Σ: High Performance Heterogeneous Training
	Pangu-Σ: Industrial Deployment
	Pangu-Σ: Training Configuration
	OPT-175B: Longest stable training duration: 2.8 days
	Pangu-Σ: Stable training for 25 days until manual termination
	Pangu-Σ: Performance on NLP downstream tasks
	Pangu-Σ: Downstream Tasks - Dialog
	Pangu-Σ: Downstream Tasks - Question and Answering
	Pangu-Σ: Downstream Tasks - Translation

	LLM Research in Huawei Noah's Ark Lab
	Multi-modal Language Models
	Wukong FILIP： Fine-grained Interactive Language-Image Pre-Training
	Wukong Dataset： A 100 Million Large-scale Chinese Cross-modal Pre-training Benchmark
	Wukong DetCLIP： Dictionary-Enriched Visual-Concept Paralleled Pre-training for Open-world Detection
	Wukong Reader： Multi-modal Pre-training for Fine-grained Visual Document Understanding

	Efficient Training and Deployment
	Compression of Pre-trained Language Models
	TinyBERT: Distilling BERT for Natural Language Understanding
	EMNLP2021 Top-Cited Paper: TinyBERT ...
	BinaryBERT: Pushing the Limit of BERT Quantization
	QuantGPT and QuantBART
	ACL2022 Outstanding Paper Award: Compression of ...
	bert2BERT: Towards Reusable Pretrained Language Models
	LMTurk: Using LMaaS as Crowdsourcing Workers

	Arabic Language Models
	JABER and SABER: Junior and Senior Arabic BERt

	Information Retrieval
	SparTerm: Learning Term-based Sparse Representation for Fast Text Retrieval

	Question Answering
	Read before Generate! Faithful Long Form Question Answering with Machine Reading

	Machine Translation
	CeMAT: Universal Conditional Masked Language Pre-training for Neural Machine Translation

	Poem Generation
	GPT-based Classical Chinese Poetry Generation

	Code Generation
	Pangu-Coder: a Function Level Code Generation Model
	SynCoBERT: Syntax-Guided Multi-Modal Contrastive Pre-Training for Code Representation

	Math Word Problem Solving
	Generate and Rank: A Multi-task Framework for Math Word Problems

	Future Work
	Future Work

	Summary
	Summary

